Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел Влияние поверхностного наклепа

Приведенные экспериментальные результаты, а также анализ многочисленных работ по влиянию поверхностного наклепа на сопротивление усталости позволили построить общую схему изменения в результате наклепа зависимости пределов  [c.154]

Для многих материалов объемное пластическое деформирование приводит к более или менее существенному повышению предела текучести, и это обстоятельство может быть благоприятным для их сопротивления малоцикловой усталости. Снятия остаточных напряжений сжатия не происходит, если поверхностный наклеп осуществляется рядом с местами интенсивного накопления макропластической деформации. Так, испытания при одностороннем изгибе призматических образцов из корпусной стали с концентратором напряжений показали благоприятное влияние поверхностного наклепа зон, прилегающих к опасному сечению на всех этапах малоциклового нагружения.  [c.165]


Влияние поверхностного наклепа на предел выносливости  [c.470]

Предел выносливости — Влияние поверхностного наклепа 520  [c.644]

С целью устранения влияния поверхностного наклепа, возникающего в процессе механической обработки, на предел усталости шлифовка образцов по номинальный размер производилась при одних и тех же режимах резания. Толщина покрытия для всех испытаний была постоянной и равнялась 0,3 мм на сторону.  [c.118]

Различные способы поверхностного упрочнения (наклеп, цементация, азотирование, поверхностная закалка токами высокой частоты ИТ. п.) сильно повышают значения предела выносливости. Это учитывается введением коэффициента влияния поверхностного упрочнения /С . Путем поверхностного упрочнения деталей можно в 2—3 раза повысить сопротивление усталости деталей машин.  [c.318]

Влияние упрочнения поверхности. Для повышения несущей способности деталей широко используют разные способы поверхностного упрочнения цементацию, нитроцементацию, азотирование, поверхностную закалку токами высокой частоты (т. в. ч.), деформационное упрочнение (наклеп) накаткой роликами или дробеструйной обработкой. Упрочнение поверхности деталей значительно повышает предел выносливости, что и учитывается к оэффициентом влияния поверхностного упрочнения Км (табл. 0.4).  [c.15]

Режим и технология точения также могут определенным образом влиять на усталостную прочность. Высокая скорость резания и большая подача заметно снижают предел выносливости вследствие повышения шероховатости поверхности и появления неблагоприятных поверхностных напряжений. Однако имеются режимы резания, которые создают поверхностный наклеп и сжимающие напряжения, повышающие предел выносливости титана. Замечено отрицательное влияние на усталостную прочность титановых сплавов охлаждения жидкостями (вода, эмульсия и пр.) при высоких скоростях резания точением. В этом случае происходит поверхностное наводороживание и даже появление гидридных пленок и слоев, способствующих возникновению растягивающих напряжений и хрупкости поверхности. Во всех случаях конечные операции механической обработки деталей из сплавов титана, подвергающихся систематическим циклическим нагрузкам, необходимо строго регламентировать, а еще лучше предусмотреть специальную поверхностную обработку, снимающую все неблагоприятные поверхностные явления и упрочняющую металл.  [c.181]


Результаты, полученные при исследовании влияния поверхностного пластического деформирования на возникновение и развитие усталостных трещин в сталях (см, гл. 6), также хорошо согласуются с приведенными теоретическими представлениями. Остаточные напряжения сжатия, образовавшиеся в результате наклепа в области вершины концентратора, приводят к резкому увеличению пределов выносливости по разрушению исследованных материалов, практически мало изменив при этом пределы выносливости по трещинообразованию. Если рассматривать эти остаточные напряжения как среднее напряжение цикла, то можно утверждать, что причиной образования широкой области нераспространяющихся трещин в этом случае было существенное изменение коэффициента асимметрии цикла от —1 до —ОО.  [c.55]

Если рассматривать остаточные напряжения сжатия, возникающие при поверхностном пластическом деформировании, как средние напряжения цикла, то их влияние на сопротивление усталости упрочненных деталей, выражающееся в существенном увеличении разрушающих напряжений, может быть также объяснено увеличением области существования нераспространяющихся усталостных трещин. Действительно, общая диаграмма изменения пределов выносливости сталей, подверженных поверхностному наклепу, хорошо согласуется с экспериментальной диаграммой влияния средних напряжений цикла на область существования нераспространяющихся усталостных трещин.  [c.94]

Для оценки влияния величины концентратора напряжений на эффективность поверхностного наклепа были проведены испытания на усталость образцов из стали 45 диаметром 26 мм гладких и с концентратором напряжений глубиной 4 мм, радиусом при вершине 0,2 мм и углом при вершине 60°. Каждый образец имел по четыре надреза, расположенных на расстоянии 15 мм один от другого, что позволило применить методику исследования трещин, развивающихся в концентраторах, работающих на различных уровнях переменных напряжений. Результаты испытаний, проведенных на базе Ю циклов, приведены на рис. 63. Исходные гладкие образцы имели предел выносливости 225 МПа (кривая /). Кривые 2 и 3, соответствующие возникновению трещины и разрушению надрезанных образцов, показывают, что выбранный для исследований концентратор напряжений (а(т = 4), является закритическим, т. е. обусловливает возникновение в нем нераспространяющихся усталостных трещин. Поверхностный наклеп приводит к резкому (более чем в  [c.154]

В результате исследования было, таким образом, подтверждено, что поверхностный наклеп является эффективным средством повышения сопротивления малоцикловой усталости всех исследованных материалов. Показано, что влияние наклепа в большей степени сказывается на увеличении ограниченного предела выносливости по разрушению. Предел выносливости по трещинообразованию изменяется значительно меньше. Полученные закономерности показывают, что как и при обычной многоцикловой усталости, остаточные сжимающие напряжения, возникающие при поверхностном наклепе, тормозят распространение трещин малоцикловой усталости.  [c.168]

Влияние режимов резания и геометрии фрезы на наклеп поверхностного слоя при попутном фрезеровании жаропрочных сплавов в основном аналогично влиянию этих же факторов при встречном фрезеровании. Подача оказывает наиболее сильное влияние на поверхностный наклеп. При применении СОЖ снижается наклеп поверхностного слоя и тем заметнее, чем меньше подача. Скорость резания в пределах исследованных значений (v = Зч-- 18 м/мин) оказывает незначительное влияние на глубину и степень наклепа. Можно считать, что глубина резания в пределах от 1 до 6 мм не влияет на наклеп поверхностного слоя при попутном фрезеровании.  [c.103]

Упрочнение чеканкой галтелей крупных и мелких образцов повысило предел выносливости до уровня не меньшего, чем соответствующие значения пределов выносливости гладких образцов. Таким образом, применение поверхностного наклепа чеканкой приводит к полному устранению влияния переходной поверхности на предел выносливости вала [58, 61]. Степень понижения предела выносливости с увеличением абсолютных размеров вала с упрочненными наклепом переходными поверхностями выражается теми же величинами, что и валов неупрочненных.  [c.292]


Для деталей, имеющих конструктивные концентраторы напряжений в виде прессовых посадок, галтелей, выточек и т. п., поверхностный наклеп особенно полезен. Так, например, наличие напрессованной втулки снижает усталостную прочность образцов примерное вдвое. Обкатыванием удается значительно повысить усталостную прочность, а зачастую и полностью устранить вредное влияние напрессовки. В результате поверхностного наклепа на 60% повышается предел выносливости образцов с кольцевым надрезом, на 50% — образцов с поперечным отверстием, на 30— 100% — ступенчатых образцов с галтелями малого радиуса.  [c.157]

Уменьшить влияние состояния поверхности на усталость можно соответствующими технологическими методами обработки, приводящими к Упрочнению поверхностных слоев. К числу таких методов относятся наклеп поверхностного слоя путем накатки роликом, обдувки дробью и т. п. химико-термические методы — азотирование, цементация, цианирование термические — поверхностная закалка токами высокой частоты или газовым пламенем. Указанные методы обработки приводят к увеличению прочности поверхностного слоя и созданию в нем значительных сжимающих остаточных напряжений, затрудняющих образование усталостной трещины, а потому влияющих на повышение предела выносливости.  [c.608]

Увеличение глубины и степени наклепа при уменьшении подачи за пределами оптимальных значений подач объясняется влиянием процесса скольжения режущего лезвия, создающего дополнительную деформацию поверхностного слоя.  [c.100]

Особенно резкий контраст эффективности влияния поверхностного наклепа на характеристики сопротивления усталости по разрушению и трещинообразованию можно наблюдать, рассматривая результаты усталостных испытаний стали 40ХН после различных режимов термической обработки. У отожженной стали 40ХН (рис. 60, в) предел выносливости по разрушению увеличился в результате наклепа на 232 %, а предел выносливости по трещинообразованию всего на 32 %. В то же время для закаленной и отпущенной стали 40ХН (рис. 61, в) предел выносливости по разрушению изменился более чем в 6 раз, а предел выносливости по трещинообразованию в 2—2,5 раза.  [c.150]

Применение поверхностного наклепа несколько увеличивает сопротивление сталей возникновению усталостных трещин при этом характер изменения пределов выносливости по трещинообразованию наклепанных образцов с увеличением коэффициента концентрации напряжений аналогичен характеру изменения того же предела для ненаклепанных (кривая DE). Предел выносливости по разрушению увеличивается в результате применения поверхностного наклепа тем больше, чем выше концентрация напряжений (кривая DF). Известно значительно меньшее влияние поверхностного наклепа на сопротивление усталости гладких образцов и очень большое его влияние на m противление усталости надрезанных образцо".  [c.155]

Влияние поверхностного наклепа на предел выносливости для деталей из углеродистых и легированных конструкционнных сталей  [c.31]

Влияние абсолютных размеров. Как показали опыты, предел выносливости данного материала для образцов больших размеров всегда меньше, чем для малых. Хотя влияние масштабного фактора в настоящее время изучено недостаточно, указанное снижение усталостной прочности материала для образцов больших размеров можно объяснить следующими обстоятельствами в большом объеме вероятность наличия внутренних концентраторов напряжений больше, чем в малом в больилих образцах влияние поверхностного наклепа меньше, чем в малых в больших образцах неоднородность напряженного состояния менее интенсивна, чем в малых.  [c.495]

На фиг. 14 приведены результаты исследований [12], показывающие характер изменения остаточных напряжений в поверхностных слоях, обкатанных роликами стальных образцов (диаметром 30 мм) под действием осевых циклических нагружений. Опыты производились со сталью 45 (предел текучести 35 кг1мм , предел усталости при пульсирующем растяжении неупрочненных образцов 26,4 кг/мм и упрочненных обкаткой 30,2 кг/мм ). Благоприятное влияние поверхностного наклепа на сопротивляемость деталей разрушению при переменных нагрузках сохраняется при длительном хранении этих деталей.  [c.186]

При анализе закономерностей изменения пределов выносливости по трещинообразованию и разрушению от термической обработки и поверхностного наклепа необходимо учитывать следующее. Пределы выносливости материала зависят от его свойств, величины и распределения остаточных напряжений термического или механического происхождения, а также формы концентратора напряжений (наличия нераспространяющихся трещин в исходных острых надрезах). В связи с этим при сравнении пределов выносливости по трещинообразованию различных материалов, полученных на одинаковых образцах, необходимо иметь в виду следующее. Различие в пределах выносливости может быть следствием того, что для одного материала выбранный концентратор напряжения имеет закритическое значение теоретического коэффициента концентрации напряжений (аа>асткр) и в нем имеются нераспространяющиеся усталостные трещины, а для другого материала концентратор тех же размеров имеет докритическое значение этого коэффициента (ао<аокр) и в нем нет нераспространяющихся трещин. Наличие в зоне надреза остаточных сжимающих напряжений термического происхождения снижает влияние остаточных напряжений, возникающих в результате последующего поверхностного наклепа, так как возможности увеличения сопротивления усталости за счет этих напрял<ений уже в какой-то мере исчерпаны. Так, для стали 08 после закалки и старения (см. рис. 61, а) наблюдается отклонение от полученной зависимости, которое можно объяснить следующим образом. Термическая обработка приво-  [c.151]


Основную роль в увеличении сопротивления малоцикловой усталости играют возникающие при поверхностном наклепе благоприятные остаточные напряжения сжатия. Вместе с тем необходимым условием при выборе режимов поверхностного наклепа при малоцнкловой усталости является сохранение в поверхностном слое достаточной способности материала накапливать пластические деформации. Влияние остаточных напряжений от поверхностного наклепа проявляется при малоцикловых нагружениях в ослаблении процесса накопления односторонней пластической деформации и в задержке развития трещин малоцикловой усталости. Влияние изменения прочностных свойств поверхностного слоя в определенных пределах проявляется в увеличении разрушающих напряжений.  [c.165]

Экспериментально установлено, что циклическое нагружение ускоряет процессы релаксации макронапряжений и может вызвать полное снятие их при температурах, при которых степень термически активируемого возврата незначительна. Так, например, снятие макронапряжений, создаваемых поверхностным наклепом в образцах из стали 50, практически начинается при напряжениях, превышающих 0,7 r i (где — предел выносливости гладкого поверхностно наклепанного образца). При циклических напряжениях 0,9a j снимается преобладающая часть макронапряжений [38]. При большом градиенте напряжений изгиба и кручения (образцы малого диаметра) макронапряжения полностью снимаются при напряжениях, превышающих предел выносливости. На образцах большого диаметра (малый градиент изгибающих напряжений) возможно полное снятие макронапряжений при напряжениях, равных пределу выносливости. Основная часть релаксируемых в заданных условиях нагружения остаточных макронапряжений снимается в первый период циклической наработки —до 1 млн. циклов. Поэтому чем выше уровень циклических напряжений, тем меньше роль и значимость остаточных макронапряжений в их влиянии на усталостную прочность при прочих равных условиях.  [c.143]

Влияние рекристаллизационного отжига на предел выносливости упрочненной обкаткой детали из стали 25 изучалось д-ром техн. наук проф. И. В. Кудрявцевым. Обкаткой роликами на образцах создавался поверхностный наклеп на глубину более  [c.356]

Положительное влияние последующего за цементацией поверхностного наклепа было отмечено также в работе [5]. На лабораторных цилиндрических образцах диаметром 6 мм из сталей 12ХНЗА и 18ХНВА было установлено, что дробеструйный наклеп после цементации приводит к дополнительному повышению предела выносливости на 20—28% (гладкие образцы) и 55—60% (надрезанные образцы), при этом очаг зарождения усталостной трещины для наклепанных образцов перемещается в подслойную область. Благоприятные изменения характера остаточной напряженности цементованного слоя, происходящие в результате наклепа дробью, обусловливают резкое снижение чувствительности цементованных образцов к надрезу. Так, предел выносливости образцов с надрезом ( = 1,54) после комбинированного упрочнения (цементации и дробеструйного наклепа) оказался равным или даже более высоким, чем предел выносливости гладких цементованных образцов без дополнительного наклепа дробью.  [c.262]

Положительное влияние последующего за цементацией поверхностного наклепа было отмечено также при повторных ударных воздействиях на цементованные детали. При ударной изгибающей нагрузке испытывали образцы, вырезанные из цементованных шестерен стали 18ХГТ. При этом установлено, что применение после цементации дробеструйного наклепа повысило условный предел выносливости на 20%. В работе [8] круглые образцы из стали 18ХГТ с круговой выточкой (радиус 2 мм) испытывают изгибом при повторных ударах от падающего груза (5 кГ, высота 30 мм) с поворотом образца на 180° после каждого удара. Результаты испытаний показывают (рис. И), что увеличение глубины цементованного слоя неблагоприятно сказывается на сопротивлении деталей разрущению при переменных ударных нагрузках. Положительный 262  [c.262]

Результат наложения ка переменные напряжения статических напряжений сжатия зависит от температуры и уровня предела выносливости при симметричном цикле. Эффективность сжимающей нагрузки, измеряемая отношением оаМ-ь как показали испытания сплава ХН77ТЮРУ при 250 С значительно выше, чем при 550° С. Отсюда следует, что применение поверхностного наклепа для деталей из сплава ХН77ТЮРУ, эксплуатируемых при 550° С, мен еэф-фективно, чем при т-емпературах до 250 С. Кроме того, длительное действие высокой температуры способствует релаксации и перераспределению остаточных напряжений в поверхностном слое детали. Статические напряжения сжатия компенсируют отрицательное влияние остаточных напряжений второго и третьего рода в высоколегированных сплавах, которое проявляется в понижении сопротивления усталости при нормальной температуре. На рис. 2.36 приведена кривая Wa-i =f( (T-i)> построенная по результатам испытания образцов гладких и с концентраторами напряжений из сплава ХН77ТЮРУ при базовом числе циклов Л б = 2-10 ... 2-10 .  [c.69]

Отрицательное влияние покрытий на предел выносливости детали можно в значительной мере предотвратить применением упрочняющих обработо к (например, поверхностного наклепа, обдувки дробью или стеклянными микрошариками, гидро- или виброгалтовки, ультразвукового упрочнения и т. д.) а также специальными термообработками или шмбинациями термических. и поверхностно упрочняющих обработок. Результаты ягсследования подобных обработок применительно к валу винта ТВД, из стали 40ХНМА приведены в табл. 4.13.  [c.144]

Поверхностный наклеп является эффективным средством новыгаения прочности и долговечности сварных соединений низколегированных п вы oкoнpoчнFJx сталей при повторных статических и вибрационных нагрузках. Наклеп дробью и нневмомолотком не оказывает существенного влияния на предел прочности, не снижает ударную вязкость и не повышает склонности к хрупкому  [c.59]

Поверхностный наклеп оказывает положительное влияние на увеличение предела выносливости образцов, подвергнутых циклическому нагружению в адсорбционной и коррозионной средах. На рис. 37 приведены усталостные кривые образцов из стали 40Х перлитоферритной структуры, работавших в разных адсорбционных и коррозионных средах. У шлифованных неупрочненных дополнительно образцов при деформировании в поверхностноактивной среде (в масле МС, активированном 2% олеиновой кислоты) снизился предел усталости на 5%, в коррозионной среде (дистиллированной воде) — на 27% по сравнению с деформированными в воздухе. Образцы, деформированные в свежем отработанном масле, имели одинаковый предел усталости.  [c.61]

Уменьшение вредного влияния твердых покрытий на предел выносливости достигается предва рительны1М поверхностным наклепом.  [c.88]

По данным И. В. Кудрявцева, обкатка роликами (поверхностный наклеп) значительно повыщает предел выносливости стали 1X13, особенно при испытании надрезанных образцов (рис. 6) к аналогичным результатам приводит азотирование (рис. 7). Влияние изменения базы испытания на сопротивление усталости — см. табл. 7.  [c.1275]


Усталостная прочность в сильной степени зависит от состояния поверхности обычно образцы для определения предела выносливости полируются. Если образец сохванил на поверхности следы токарной обработки, предел выносливости его будет ниже. Таким образом, шероховатость поверхности играет ту же роль, что и концентрация напряжений. Для количественной оценки этого влияния можно ввести коэффициент, аналогичный коэффициенту концентрации. Для поверхности, обработанной резцом, соответствующий коэффициент может достигать значения 1,25. С другой стороны, упрочнение поверхности путем создания поверхностного наклепа (обкатка, дробеструйная обработка), цианирования и поверхностной закалки повышает предел выносливости.  [c.424]

Отметим основные закономерности повышения предела выносливости титановых сплавов в результате ППД, общие для различных методов. Установлено [191, 192], что эффективность ППД в прлной мере сохраняется до температуры примерно 200°С, а частично до 500°С и даже выше. Эффект не изменяется во времени и в средах, не опасных для титановых сплавов без ППД. Положительное влияние ППД на усталостную прочность в определенной степени сохраняется даже при полном снятии остаточных сжимающих напряжений низкотемпературным отжигом вплоть до рекристаллизационного. В этом случае положительное действие ППД можно объяснить "облагораживанием" микроструктуры поверхностного слоя, которая после наклепа и рекристаллизации становится очень одно-(Х)дной, мелкозернистой, т.е. наиболее благоприятной по сопротивлению появлению усталостных трещин. Кроме того, благодаря измельчению зерна и субзерен процесс образования пластических микросдвигов затрудняется и усталостная прочность растет.  [c.200]

Обкатка роликами и шариками применяется в машиностроении как средство упрочнения валов, осей, пальцев, шпилек, зубчатых колес и других деталей. Накатывают цилиндрические поверхности, галтели, канавки, впадины зубьев и шлицев, торцовые поверхности и резьбы. По эффективности обкатка занимает одно из первых мест среди других методов поверхностного упрочнения. Она позволяет получить слой наклепа 3 мм и более, т. е. значительно больший, чем, например, при дробеструйной обработке. Это особенно важно для деталей больших размеров (глубина наклепа при обкатке подступич-ной части вагонных осей достигает 19 мм). Твердость поверхностных слоев, по сравнению с исходной, повышается на 20—40%, предел выносливости гладких образцов — на 20—30%, а при работе в коррозионной среде в 4 раза. В зонах концентрации напряжений, в местах контакта с напрессованными деталями предел выносливости повышается в 2 раза и более. Срок службы различных валов в результате накатки увеличивается в 1,5—2 раза, осей вагонов — в 25 раз, штоков молотов — в 2,5—4 раза и т. д. Обкатка не только создает наклеп и формирует остаточные напряжения сжатия, но и на 2—3 класса снижает шероховатость поверхности, доводя ее до 8—10-го классов. В связи с этим в ряде случаев.обкатка вытесняет малопроизводительное шлифование. Наряду с непосредственным упрочнением от наклепа, при этом устраняется вредное влияние на прочность деталей концентраторов напряжения, возникающих при шлифовании из-за прижогов.  [c.107]

Для достижений максимальной эффективности упрочнения деталей, работающих в условиях статических и динамических нагрузок, рекомендуется содержание углерода в цементованном слое поддерживать в пределах 0,80—1,05%. В случае применения сталей с 0,27—0,34% С глубину цементованного слоя следует назначать в пределах 0,5—0,7 мм. Для цементуемых сталей, содержащих 0,17—0,24% С, глубину цементованного слоя принимают от 1,0 до 1,25 мм. При этом следует иметь в виду, что сопротивление усталости деталей машин без концентраторов напряжений при малых глубинах слоя зависит от прочности сердцевины, при больших — от прочности поверхностного слоя. В этом случае повышение глубины упрочненного слоя оказывается полезным только до 10—20%) радиуса детали. При глубине слоя меньше этих значений сопротивление усталости повышается с увеличением прочности сердцевины. При наличии на поверхности деталей концентраторов напряжений сопротивление усталости повышается с увеличением остаточных напряжений сжатия, а глубина слоя должна быть очень малой (1—2% радиуса детали). Главным фактором, вызывающим увеличение предела выносливости при химико-термических методах обработки деталей, являются остаточные напряжения, возникающие в материале детали в процессе упрочнения. При поверхностной закалке т. в. ч. главное влияние на повышение предела выносливости и долговечности оказывает изменение механических характеристик материала поверхностного слоя. В еще большей степени это относится к упрочнению наклепом.  [c.302]

Влияние обработки гидрополированием на предел выносливости стали изучалось на обычных образцах диаметром 14 мм с концентратором напряжений в виде кругового надреза глубиной 1 мм. Все образцы изготовляли на токарном станке из стали 1X13 одной плавки после нормализации НВ 200) при одинаковых режимах. Затем поверхность участка образца с надрезом обрабатывали гидрополированием (до 6-го класса чистоты) или механическим полированием (до 8-го класса чистоты), или дробью (до 5-го класса чистоты), или дробью с последующим гидрополированием (до 7-го класса чистоты). В зависимости от метода обработки поверхностный слой образцов имел различную глубину наклепа после обработки дробью 0,3 мм дробью с абразивом 0,2 мм гидрополированием (зерно ЭК-100) 0,15 мм после грубого шлифования 0,75 мм.  [c.315]


Смотреть страницы где упоминается термин Предел Влияние поверхностного наклепа : [c.203]    [c.84]    [c.251]    [c.93]    [c.95]    [c.13]    [c.36]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.520 ]



ПОИСК



Влияние наклепа

Наклеп

Наклеп поверхностный

Наклеп поверхностный — Влияние

Предел Влияние наклепа

Сплавы Предел выносливости — Влияние поверхностного наклепа



© 2025 Mash-xxl.info Реклама на сайте