Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генераторы Определение

О роли проводимости газа в эффективности МГД-генератора можно судить по расчетным кривым, приведенным на рис. XV.29. Здесь представлена зависимость наибольшего характерного размера генератора определенной мощности (в данном случае 100 ООО кВт) в функции проводимости газа и напряженности магнитного поля.  [c.458]

Двигатель-генераторы - Определение 378  [c.537]

Двигатель-генератор — Определение 467 Движение вихревое 677 Движение жидкости — см. Жидкости — Движение  [c.708]


Запоминающее устройство с магнитной записью сигнала датчика (рис. 161) содержит фотоэлектрический преобразователь 1, который, измерив изделие, через электромагнитное реле подает сигнал-команду на один из замыкающих контактов /С, соединяющих звуковые генераторы Г с записывающей головкой 4 магнитофона. Каждому фоторезистору датчика соответствует генератор определенной частоты. При замыкании контакта К записывающая головка 4 намагничивает ферромагнитную пленку 3 с заданной частотой. Пленка нанесена на диск 9, вращающийся синхронно с транспортным устройством автомата время прохождения намагниченного участка пленки вдоль исполнительных узлов I—V совпадает с моментом прохождения изделия над бункерами автомата. При прохождении намагниченного участка пленки мимо считывающих головок 5 в них вырабатывается электросигнал. Если частота сигнала совпадает с частотой полосового фильтра 6, то он поступает на усилитель 7 и включает электромагнит 8 заслонки соответствующего бункера. Перед записывающей головкой 4 пленка размагничивается стирающей головкой 2.  [c.206]

Решение первого вопроса достигается путем однозначной фиксаций соответствия между определенными группами взаимосвязанных наборов дескрипторов, характеризующих экономический смысл показателей, задаваемых в запросе на генерацию, и представлением математических моделей, раскрывающих общую формулу их получения. При этом необходимо иметь в виду, что при проектировании генератора определенным классам ЭММ ставится в соответствие шаблон (т. е. ЭММ рассматривается как обобщенный алфавитный оператор (Л), а шаблон — совокупность правил отображения Л в обрабатывающий алгоритм).  [c.140]

За последние годы разработан ряд приборов, основанных на методе вихревых токов и предназначенных для контроля прутков, труб, проволоки и разных мелких деталей. Конструкции и схемы этих приборов варьируются в зависимости от типа контролируемых изделий, от характера дефектов, подлежащих обнаружению, от конкретных физических свойств контролируемого материала и др. Приборы, как правило, имеют генератор определенной фиксированной частоты (или нескольких частот), измерительные и компенсационные катушки, индикаторное устройство для исследования разности э. д. с. измерительной и компенсационной катушек, а также систему фазовой и амплитудной регулировки этой э. д. с. В качестве индикаторного устройства обычно используется электронно-лучевая трубка, применение которой особенно необходимо в тех случаях, когда, кроме контролируемого переменного параметра, имеет место какой-либо другой переменный (мешающий обычным измерениям) параметр.  [c.238]

Добавочные сопротивления регулятора напряжения и ограничителя тока расположены под фундаментной панелью, где они защищены от воз.можных повреждений. Регулятор напряжения выполнен двухступенчатым (с двумя парами контактов), а ограничитель тока—одноступенчатым (с одной парой контактов). При достижении током генератора определенной величины ограничитель тока включает в цепь возбуждения генератора добавочное сопротивление.  [c.297]


В гальваническом элементе катод считается положительным полюсом, анод — отрицательным. Если ток подводится к элементу извне — от генератора или от батареи — восстановление идет на электроде, присоединенном к отрицательному полюсу внешнего источника тока, этот электрод служит катодом, а электрод, соединенный с положительным полюсом генератора, — анодом. Это определение справедливо, когда элемент генерирует ток, а также когда ток подается извне.  [c.23]

Создание ПО САПР —сложная научно-техническая задача, решение которой возможно лишь с привлечением современных методов разработки ПО. Процесс создания ПО состоит из шести основных этапов I) анализ требований 2) определение спецификаций 3) проектирование 4) кодирование модулей 5) тестирование 6) сопровождение. Наиболее ответственны ранние этапы разработки, на последний этап приходятся наибольшие затраты. Для повышения производительности труда разработчиков ПО предложен ряд методов и средств анализаторы требований, нисходящее проектирование, модульное и структурное программирование, генераторы прикладных программ и др.  [c.51]

Этого набора факторов достаточно для определения оптимальных соотношений индуктора при фиксации конструктивного исполнения, числа пар полюсов и активных изоляционных материалов. Конечно, указанные данные принципиально также можно рассматривать в виде факторов, что приведет к более универсальным регрессионным уравнениям. Однако резкое увеличение числа факторов сопровождается неоправданной громоздкостью регрессионных уравнений и большими осложнениями в обработке и оценке результатов факторного эксперимента. Учитывая, что при проектировании синхронных генераторов конструкция, материалы, частота вращения, частота напряжения известны до начала расчетов, эти данные можно считать фиксированными без особой потери общности в конечных результатах.  [c.106]

В соответствии с выражением (5.102) можно сказать, что особые точки системы (5,103), расположенные на плоскости UV пространства uvw, соответствуют периодическим движениям генератора с частотой р = k . Особые точки, расположенные на оси w, соответствуют периодическим движениям с частотой 2- Особые точки, расположенные вне осей и, у и ш, соответствуют бигармоническим движениям с частотами к = р и к.,. Обозначив р = v , получим уравнения для определения особых точек в виде  [c.186]

Магнетрон газонаполненный — магнетрон с холодным катодом и газовым генератором, поддерживающим определенное давление газа для обеспечения возбуждения.  [c.148]

Для определения, например, местонахождения самолета антенну радиолокатора направляют на самолет и на очень короткое время включают генератор электромагнитных волн. Электромагнитные волны отражаются от самолета и возвращаются к радиолокатору. Отраженный радиосигнал улавливает та же антенна, отключенная от передатчика и подключенная к приемнику (рис. 256). По углам поворота антенны радиолокатора определяется направление на самолет. Радиолокатор, установленный на самолете, позволяет по времени прохождения радиоволн до поверхности Земли и обратно измерять высоту, на которой находится самолет.  [c.260]

Ультракороткие волны (УКВ) представляют чрезвычайный интерес для решения многих важнейших технических задач. Это связано с тем, что для передачи энергии и получения направленного излучения выгодно увеличивать частоту колебаний (см. 1.5). Революция в технике УКВ" произошла в 1930 — 1940 гг., и теперь устройства, на которых были проведены знаменитые опыты Герца, Попова и др., представляют лишь исторический интерес. Основной недостаток передатчика Герца — это затухание колебаний и большая ширина спектра излучаемых частот. В современных генераторах УКВ (клистронах и магнетронах) взаимодействие электронного пучка и волн, возникающих в резонаторе, происходит по-иному, что позволяет поднять верхнюю границу частот (v 30 ГГц) и резко увеличить мощность сигнала, достигающего иногда десятков миллионов ватт в им пульсе. Положительными свойствами подобных излучателей являются высокая монохроматичность электромагнитной волны (излучается строго определенная частота) и крутой фронт временных характеристик сигнала. В качестве приемника УКВ-излучения обычно используют вибратор или объемный резонатор с кристаллическим детектором, имеющим резко нелинейные свойства, с последующим усилением низкочастотного сигнала.  [c.10]


Укажем, что излучение лазера (оптического квантового генератора) в наибольшей степени отвечает сформулированным требованиям — расходимость пучка очень мала, и излучается обычно строго определенная длина волны. Однако и это утверждение требует более подробного обсуждения.  [c.32]

В оптической области спектра эффект отдачи приводит к очень малому сдвигу линии. Тем не менее он может при определенных условиях проявляться в спектральных свойствах излучения оптических квантовых генераторов, и в 1975 г. эти проявления были обнаружены на опыте.  [c.659]

Основным понятием, которым мы оперировали на протяжении всего курса, служила плоская (или сферическая) волна. В данной главе выяснилось, что применительно к оптическим квантовым генераторам более адекватным физическим образом является совокупность когерентных между собою волн, удовлетворяющая требованиям принципа цикличности. Такая совокупность, характеризующаяся определенными частотой, поляризацией и стационарной геометрической конфигурацией, носит название типа колебаний резонатора ). В резонаторе, образованном плоскими зеркалами, типом колебаний служит стоячая волна (229.8), в случае резонатора со сферическими зеркалами, — стоячая волна, состоящая из двух гауссовых пучков, распространяющихся навстречу друг другу, волновые фронты которых совпадают с поверхностями зеркал. В других случаях конфигурация поля будет иной, характерной для каждой конкретной геометрии резонатора.  [c.809]

При алгоритмической реализации метода штрафных функций большое значение для обеспечения сходимости поиска имеет выбор коэффициента штрафа г. Для иллюстрации в табл. 5.6 приведены результаты минимизации объема генератора с использованием метода внешних штрафных функций в зависимости от значения г [28]. В данном случае оптимальным с точки зрения скорости определения экстремума  [c.168]

Одноконтурный параметрический генератор с нелинейным затуханием. Рассмотрим последовательный колебательный контур с элементами I, С, R и допустим, что во времени меняется только реактивный параметр С (1), а активное (омическое) сопротивление зависит от проходящего через него тока R ( ). Тогда при параметрическом воздействии такая колебательная система с нелинейным сопротивлением (рис. 4.22) при определенных условиях, налагаемых на параметры системы, может стать одноконтурным параметрическим генератором.  [c.163]

Использование колебательных систем с двумя степенями свободы существенно улучшает характеристики параметрических устройств. На практике используются двухконтурные параметрические усилители, генераторы и делители частоты. Недостатком одноконтурного параметрического усилителя в когерентном режиме является необходимость выполнения определенных частотных и фазовых соотношений между сигналом накачки и усиливаемым сигналом. При некогерентном режиме усиления фазовые соотношения теряют смысл и становятся принципиально неизбежными искажения формы усиливаемого сигнала. Это связано с тем, что в полосу пропускания контура усилителя попадают две частоты частота  [c.254]

Проведенный выше анализ показывает, что под влиянием резонансной нагрузки автоколебательная система может в определенной области частот изменить свою частоту и амплитуду, вообще прекратить колебания (режим гашения) или попасть в режим скачкообразного изменения амплитуды и частоты. Поэтому при использовании резонансной нагрузки необходимо принимать меры для уменьшения ее обратного влияния на автоколебательную систему. Одним из примеров системы с резонансной нагрузкой является генератор, связанный с контуром волномера. Для правильного измерения генерируемой частоты необходимо, чтобы связь между контурами генератора и волномера была достаточно мала (режим отсоса энергии). Явления затягивания и гашений, наступающие при сильной связи, в этом случае снижают точность определения частоты. Однако явление затягивания может быть использовано для стабилизации частоты автоколебаний. Для этого в качестве дополнительного контура в систему включают контур с высокой добротностью. В радиодиапазоне обычно применяется кварцевый резонатор, а в диапазоне СВЧ — высокодобротный объемный резонатор. При малом 63 область затягивания увеличивается. В этой области значительные вариации парциальной частоты контура генератора сопровождаются малыми изменениями генерируемой частоты. На рис. 7.12 жирными линиями изображены области стабилизации частоты при затягивании.  [c.277]

Вариация частоты. Разновидностью контурного резонансного метода является способ определения параметров образца и б путем изменения (вариации) частоты. Для этого необходимы генератор высокой частоты и точный частотомер или волномер. Источник питания, снабженный волномером В, присоединен к параллельному колебательному контуру (рис. 4-12, а), содержащему катушку индуктивности L и конденсатор постоянной емкости С (емкость С известна). Изменяя частоту, настраивают контур в ре-  [c.81]

При этом наблюдается стремление ряда стран объединить усилия и создать межнациональные информационные системы (например, Германия и Швейцария) или согласовать признаки классификации отказов генераторов и методы расчета показателей надежности (например, США и Канада). В большинстве стран электроснабжающие компании обобщают и анализируют данные по эксплуатации генераторов. При этом информация о их надежности с указанием типа и фирмы-изготовителя является конфиденциальной (для ограниченного использования). Информация же по стране в целом, без разделения показателей надежности по типоразмерам генераторов, без классификации отказов по сборочным единицам и деталям публикуется ежегодно. Средние значения наработок на отказ публикуют лишь некоторые страны (США, Канада, Бразилия). Конфиденциальность информации о надежности генераторов делает невозможным широкий обмен информацией в международном масштабе. Публикуемые данные носят ограниченный характер, не позволяют сделать заключение о надежности генераторов определенного типоразмера. Одной из причин этого явл5потся различия в группировке генераторов по мощности. Ряд стран и энергетических организаций используют общие способы группировки генераторов по мощности ЕЕТ (США), VGB (Германия и Швейцария), СЕА (Канада), NER (США). В обзорах, публикуемых NER , принята следующая группировка по тепловым электростанциям - генераторы средней мощности (200-574 МВт) и генераторы большой мощности (более 574 МВт) по атомным электростанциям - без разделения генераторов по мощности.  [c.374]


Сварочный осциллятор представляет собой искровой генератор затухающих колебаний. Он содержит (рис. 75, а) низкочастотный поит.т пающий трансформатор ПТ, вторичное напряжение которого достигает 2—3 кВ, разрядник Р, колебательный контур, состав-леппый из емкости 6 , индуктивности Lk, обмотки связи и блокировочного ] опдепсатора С(. Обмотки и L образуют высокочастотный трансформатор ВТ. Вторичное напряжение ПТ ъ начале полупериода заряжает конденсатор Си и при достижении определенной величины вызывает пробой разрядника Р. В результате колебательный коптур Ь Ск оказывается закороченным и в нем возникают затухающие колебания с резонансной частотой  [c.138]

Рассмотрим схему автоматической систел ы программного управления станков типа токарных или револьверных (рис. 28.10). Иа этой схеме каждглй из электродвигателей W является приводом соответствующего исполнительного механизма станка. Блок программы представляет собой устройство, протягивающее магнитную лепту 5 последовательно мимо двух магнитных головок 3 и 4. Для управления каждым из электродвигателей 10 установлен магнитный пускатель 9 и кнопка /. При нажиме кнопки 1 одновременно включается двигатель 10 и соответствующий генератор 2, генерирующий электрические колебания определенной частоты.  [c.587]

Однако вибрации при обработке можно использовать так, чтобы они положительно влияли на процесс резания и качество обработанных поверхностей, в частности применять вибрационное резание особенно труднообрабатываемых материалов. Сущность вибрационного резания состоит в том, что в процессе обработки создаются искусственные колебания инструмента с регулируемой частото и заданной амплитудой в определенном направлении. Источниками искусственных колебаний служат механические вибраторы или высокочастотные генераторы. Частота колебаний 200—20 ООО Ги, амплитуда колебаний 0,02—0,002 мм. Выбор оптимальных амплитуд и частоты колебаний зависит от технологического метода обработки и режима резания. Колебания задают по направлению подачи или скорости резания.  [c.274]

Метод мозгового штурма — метод коллективного генерирования технических решений. Создается группа специалистов — генератор идей , включающая в себя специалистов смежных, а иногда даже далеких областей науки и техники. Это объясняется тем, что для специалистов отдельной области науки и техники существует кризис идей , связанный с определенным избытком информации и ограничивающий направления совершенс"-вования конструкции, а специалисты из других областей науки и техники могут привнести свежие идеи из своей области. Необходимым условием успеха при использовании этого метода является отсутствие критики высказываемых идей во избежание сковывания творческой инициативы членов группы. Сформированное достаточно большое число решений анализируется специалистами, и наиболее плодотворные технические решения развиваются далее.  [c.14]

В работе [96] исследовались акустические свойства пузырей воздуха в воде для определения влияния пузырей, образующихся в следах кораблей и подводных лодок, на распространение звука. Были проведены измерения коэффициентов затухания звука при прохождении через пузырьковый экран (430 X 76 мм при различных вертикальных размерах до 152 мм) и отражение звука от этого экрана при различной концентрации пузырей в некотором интервале их размеров. Пузыри были образованы при помощи генератора пузырей (микродисперсера). Радиусы пузырей измеряли оптическими и акустическими методами. Акустические измерения сводились к определению резонансной частоты сод пузыря  [c.261]

В уравнениях (4.55) — (4.58) исключены члены, не оказывающие практического влияния на конечный результат. Максимальная погрешность (%) по модулю не превышает в определении F,dmax—5, ftm опт—4, Лт опт—4, Лр опт—5. Такая точность удовлетворительна для инженерной практики проектирования. Результаты расчетов по этим уравнениям хорошо согласуются с результатами полной оптимизации синхронных генераторов на ЭВМ. Дальнейшее повышение точности до 1—2% достигается путем использования регрессионных уравнений второго порядка, что, однако, свяазно с некоторым усложнением вида уравнений.  [c.106]

Если вращать водило, которое обычно является входным звеном, то зоны зацепления зубьев будут также вращаться, образуются бегущие волновые деформации гибкого колеса (отсюда и название передачи). Водило называется генератором волн (волнообразователем). При двух роликах на водиле передача называется двухволновой, при трех роликах — трехволновой. Наряду с такими генераторами свободной деформации применяются генераторы принудительной деформации (рис. 20.7, ) в виде кулачка эллиптического или другого профиля, которые создают определенную деформацию гибкого колеса. Передачи с генератором принудительной деформации более долговечны.  [c.237]

Наличие оптических квантовых генераторов, даже мощных, работающих на вполне определенных фиксированных частотах, число которых сравнительно невелико, не может удовлетворить все возрастающую в них потребность. Для целесообразного применения в разных областях науки и практики крайне необходимо создать лазеры, способные генерировать мощные когерентные излучения в широких пределах перестраиваемых частот. В этом заключалась одиа из важнейших задач лазерной физики. Поставлеппая задача нашла свое успешное решение в работах С. А. Ахманова, Р. В. Хохлова и независимо от них Н. Кролла в США, проведенных в 1962 г.  [c.407]

Реакция (р, п) на углероде еС изучалась с помощью генератора Ван-де-Граафа, позволяющего получать моноэнергетиче-ские протоны. Протонами облучалась тонкая углеродная мишень, а образующиеся в результате реакции нейтроны регистрировались счетчиками BF3. При этом для некоторых определенных значений энергии падающих протонов (Т р)реа было обнаружено возрастание выхода нейтронов, свидетельствующее о резонансном характере изменения сечения реакции. По резонансным значениям энергии протонов при помощи формулы  [c.450]

Генератор преобразования, содержащий малый параметр у, выберем в виде s= iY i g a + к. с. Величина y k подлежит определению. Собирая члены одного порядка малости, находим  [c.265]

Интересно отметить, что еще в 40-х гг. нашего столетия некоторые ученые понимали, что атомы, приведенные в возбужденное состояние, при определенных условиях будут усиливать электромагнитное изл чение. Так, в 1939 г. Фабрикант указал на во 1можность экспериментального обнаружения отрицательного поглощения. Однако в то время никто не высказывал каких-либо идей о возможности создания квантовых генераторов. Такие идеи были осмыслены теоретически п реализованы практически лишь в 1954—1955 гг.  [c.267]

Голографические методы контроля. Методы основаны на интерференции световых волн. Источником световых волн являются оптические квантовые генераторы, позволяющие получать свет с определенной длиной волны (монохроматические волны) и в определенной фазе колебаний (когерентные волны). Использование лазеров (лазерных диодов) позволяет восстанавливать мнимое объемное изображение объекта в целом либо части этого объекта. Фиксируя на детекторе (фотопластинке или экранр монитора) наложенные изображения состояния объектов (например, без нагрузки и под нагрузкой), получают интерференционные картины, которые являются источником информации о наличии дефектов в объектах контроля. При этом интерференционные картины весьма чувствительны к незначительным перемещениям частей поверхности, которые появляются в области концентрации напряжений объекта контроля вследствие наличия в нем дефекта. Метод, основанный на голографический интерференции световых волн, применяется в основном для анализа напряженно-деформированно-го состояния сварных соединений и контроля за остаточными сварочными напряжениями.  [c.211]


Для того чтобы обеспечить компенсацию потерь или пополнение запаса колебательной энергии в системе должен содержаться внутренний источник в сочетании с устройством, преобразующим энергию этого источника в требуемую форму (батарея с электронной лампой, батарея с туннельным диодом, источник тока с газоразрядным прибором, генератор напряжения или тока определенной частоты, вызывающий изменение энергоемкого параметра во времени и т. д.).  [c.144]

Однако в природе существуют и искусственно могут быть созданы элементы, параметры которых зависят не от мгновенных значений координат, а от амплитудных значений. Такие элементы (устройства) называются инерционными нелинейностями, ибо они принимают соответствующие значения не сразу, а через определенное время, называемое постоянной времени того или иного элемента. В 4.5 описан одноконтурный параметрический генератор с автосмещением, в котором действующее значение емкости контура, содержащего полупроводниковый диод с цепочкой автосмещения, определяется не мгновенными значениями генерируемых колебаний интересующей нас величины, а ее амплитудой, и устанавливается это значение емкости через время, равное постоянной времени цепи автосмещения.  [c.211]

В определенной области, если при этом обеспечивается достаточная глубина изменения параметра (порог для внешнего воздействия), происходит параметрическое возбуждение колебаний в недовозбужденной автоколебательной системе с частотой, точно в два раза меньшей частоты внешнего воздействия. Этим объясняется форма резонансных кривых второго рода, аналогичных кривым параметрического резонанса в параметрических генераторах с нелинейным затуханием.  [c.222]

Для определения полосы синхронизации обозначим граничные частоты, при которых она возникает, через р[ 2 = = (0о —Тогда в точках гашения автоколебаний можно записать, чтб амплитуда вынужденных колебании в точности равна амплитуде автономного генератора, т. е. л —Лр = ДДсоо —Р1,2),  [c.223]

Из (7.1.13) видно, что амплитуда колебаний в первом контуре монотонно уменьшается по мере увеличения амплитуды накачки. Таким образом, в этом случае усиление сигнала в первом контуре не происходит. Однако при определенных условиях в системе возможно усиление, если использовать колебания в дополнительном контуре, амплитуда которых пропорциональна амплитуде входного сигнала. Такой усилитель является нерегенеративным параметрическим усилителем с преобразованием частоты вверх. Определим коэффициент его усиления по мощности. Под коэффициентом усиления по мощности будем понимать отношение мощности на выходе усилителя к мощности входного сигнала, выделяемой на согласованной нагрузке. Поскольку генератор входного сигнала дает ток с амплитудой / и имеет внутреннее сопротивление то на согласованную нагрузку он отдает мощность  [c.258]

В генераторе Ван-де-Граафа ускорение осуществляется электростатическим полем. Полый металлический шар заряжается до очень высокого потенциала. Изнутри шара выходит многосекционная вакуумная трубка, из которой и вылетает пучок частиц. Энергия частиц пучка в электронвольтах по определению этой единицы равна потенциалу шара для протонов и дейтронов, а для а-частиц — в два раза больше.  [c.470]

В квантовой электронике применяют системы, в которых используется энергия, запасенная в составляющих ее частицах — атомах, ионах, молекулах. Поскольку эти частицы получают и отдают энергию только определенными порциями — квантами, то приборы, работающие на этом принципе, называют квантовыми (усилителями, генераторами и др.). Для работы квантового прибора необходимо возбудить частицы системы или, как принято говорить, перевести их на более высокий энергетический уровень (уровни). Без разъяснения термина энергетический уровень нельзя понять. механизма работы приборов квантовой электроники. Используем для этого примеры, приведенные в работах польского физика А. Пекара. В качестве объекта исследования он предлагает рассмотреть энергетические уровни потенциальной энергии обычного квадратного стола и на этом примере познакомиться с терминологией, используемой в материаловедении квантовой электроники. (2тол может находиться на полу в шести положениях.  [c.58]


Смотреть страницы где упоминается термин Генераторы Определение : [c.327]    [c.588]    [c.118]    [c.94]    [c.159]    [c.178]    [c.191]    [c.217]    [c.214]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.467 ]



ПОИСК



372 — Метод направленного поиска тракторного генератора 348-352 — Методы оптимизации 475-479, 480 — Определение оптимального уровня автоматизации 355-359 - Особенности 469 Оценка безотказности с помощью вероятностной модели точности сборки

Автогенераторы (определение) С-генераторы

Блокинг - генераторы 758 (определение

ГЕНЕРАТОРЫ ИМПУЛЬСОВ — ГОСТ тел вращения с утонением — Заготовки — Определение размеров и припуски 812, 813 — Степени

Генераторы постоянного тока - Колебания крутильные - Определение коэфициентов

Двигатель-генератор — Определение

Двигатель-генераторы —• Определени

Импульсный генератор определения упругих констант

Основные неисправности генераторов, реле обратного тока, регуляторов напряжения и ограничителей тока. Способы их определения и устранения



© 2025 Mash-xxl.info Реклама на сайте