Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структурные превращения в сварном шве и зоне термического влияния

В сварных деталях и изделиях в процессе сварки под действием неравномерного нагрева основного металла и структурных превращений в зоне термического влияния возникают упругие и пластические деформации, нарушающие заданные размеры конструкции и в некоторых случаях вызывающие образование трещин в металле шва и околошовной зоны.  [c.67]


Итак, скорость коррозии в азотной кислоте зависит от присутствия ионов металлов высшей валентности и от воздействия паров окислов азота. Можно наблюдать очень сильную коррозию, если быстро удалять окислы азота и, наоборот, замедленную коррозию, если их не удалять. Повышенная скорость коррозии находится в связи с ростом потенциала (рис. 93) [41, 42] и проявляется в виде сильного межкристаллитного разрушения, очень тесно связанного со структурными превращениями в зоне термического влияния сварных швов.  [c.185]

Таким образом, различные участки основного металла характеризуются различными максимальными температурами и различными скоростями нагрева и охлаждения, т.е. подвергаются своеобразной термообработке. Поэтому структура и свойства основного металла в различных участках сварного соединения различны. Зону основного металла, в которой под воздействием термического цикла при сварке произошли фазовые и структурные изменения, называют зоной термического влияния. Характер этих превращений и протяженность зоны термического влияния зависят от состава и теплофизических свойств свариваемого металла, способа и режима сварки, типа сварного соединения и т.п.  [c.259]

Циклограммы процесса шовной сварки бывают с непрерывным включением тока (рис. 5.36, а) и с прерывистым (рис. 5.36, б). Последовательность этапов технологических операций в начале и при завершении сварки шва такая же, как и при точечной. Циклограмму с непрерывным включением тока применяют для сварки коротких швов и металлов и сплавов, не склонных к росту зерна и не претерпевающих заметных структурных превращений при перегреве околошовной зоны (низкоуглеродистые и низколегированные стали). Циклограмма с прерывистым включением тока обеспечивает стабильность процесса и высокое качество сварного соединения при малой зоне термического влияния. Ее используют при сварке длинных швов на заготовках из высоколегированных сталей и алюминиевых сплавов.  [c.217]

Зона термического влияния (з. т. в.) представляет собой участок сварного соединения, прилегающий к шву, в котором под действием нагрева происходят структурные изменения укрупняется зерно, оплавляются границы зерен, в сплавах с полиморфными превращениями возможно образование микроструктуры закалочного типа. В результате этих изменений возможно резкое повышение твердости и снижение пластичности (рис. 5.47).  [c.229]


При различных технологических операциях различны и причины, приводящие к неоднородным объемным деформациям, т. е. причины, вызывающие появление остаточных напряжений. В сварочном процессе, например, такими причинами являются температурный цикл сварки, структурные превращения в металле шва и в зонах термического влияния и изменение растворимости газов, окружающих сварной шов. Литейные остаточные напряжения возникают как следствие неравномерного (по объему детали) остывания отливок. При обработке давлением источником возникновения остаточных напряжений может быть неравномерная пластическая деформация.  [c.210]

Причинами возникновения сварочных напряжений являются неравномерность распределения температуры при сварке и жесткость свариваемых элементов, препятствующая свободному развитию тепловых деформаций и вызывающая возникновение пластических деформаций. При сварке закаливающихся сталей на развитие сварочных напряжений влияют также структурные превращения в шве и зоне термического влияния, сопровождающиеся изменением объема. В сварных соединениях разнородных сталей проведение термической обработки приводит к появлению нового вида термических внутренних напряжений, обусловленных разностью коэффициентов линейного расширения свариваемых деталей (п. 5 главы II).  [c.59]

Основными показателями свариваемости низкоуглеродистых бей-нитно-мартенситных сталей являются сопротивляемость сварных соединений холодным трещинам и хрупкому разрушению и механические свойства зоны термического влияния, которые прежде всего связаны с фазовыми превращениями и структурными изменениями происходящими в стали при сварке. Структурные изменениях в стали при воздействии термического сварочного цикла оценивают по термокинетическим диаграммам непрерывного распада аустенита.  [c.291]

Зона термического влияния (ЗТВ) - участок основного металла, примыкающий к сварному шву, в пределах которого вследствие теплового воздействия сварочного источника нагрева протекают фазовые и структурные превращения в твердом металле. В результате этого ЗТВ имеет отличные от основного металла величину зерна и вторичную микроструктуру. Часто выделяют околошовный участок ЗТВ или околошовную зону (ОШЗ).  [c.131]

Горячие трещины образуются непосредственно в сварном шве в процессе кристаллизации, когда металл находится в двухфазном состоянии. Причинами их возникновения являются кристаллизационные усадочные напряжения, а также образование сегрегаций примесей (серы, фосфора, кислорода), ослабляющих связи между формирующимися зернами. Склонность к образованию горячих трещин тем выше, чем шире интервал кристаллизации и ниже металлургическое качество стали. Углерод расширяет интервал кристаллизации и усиливает склонность стали к возникновению горячих трещин. Холодные трещины образуются при охлаждении сварного шва ниже 200 - 300 °С преимущественно в зоне термического влияния. Это наиболее распространенный дефект при сварке легированных сталей. Холодные трещины редко встречаются в низкоуглеродистых сталях и особенно в сталях с аустенитной структурой. Причина их образования — внутренние напряжения, возникающие при структурных превращениях (особенно мартенситном) в результате местной закалки (подкалки). Увеличивая объемный эффект мартенситного превращения, углерод способствует появлению холодных трещин.  [c.290]

Остаточные напряжения после сварки. Основными причи-иа.ми образования остаточных напряжений после сварки являются температурные напряжения при нагреве до расплавления и последующем остывании материала, неоднородные структурные превращения в шве и зонах термического влияния, изменение растворимости газов, окружающих сварной шов [22].  [c.283]


Структурные превращения металла в зоне термического влияв ия происходят в соответствии с температурой, до которой нагревается металл при сварке, и скоростью охлаждения. Участки металла, расположенные на разных расстояниях от оси сварного шва, нагреваются неодинаково. Если сопоставить кривую распределения максимальных температур с диаграммой состояния железо— углерод, позволяющей определить фазовые и структурные превращения стали с определенным содержанием углерода, то станет очевидным, что зона термического влияния неоднородна по структуре.  [c.382]

Под действием тепловой энергии, вводимой в изделие при сварке, металл в зоне сварного шва расплавляется, а непосредственно прилегающие к шву участки нагреваются до высоких температур и вследствие этого в зоне термического влияния происходят структурные превращения.  [c.381]

Сварное соединение можно разделить на три основные зоны, имеющие различные микроструктуры А — зона основного металла, Б — зона термического влияния, В — зона иеталла шва (рис. 38). Металл шва (наплавленный металл) пмеет структуру литой стали. Зоной термического влияния называют прилегающий к шву участок основного металла (околошовная зона), в котором произошли структурные фазовые превращения (изменение формы и размера зерен) вследствие нагрева в процессе сварки, до температуры выше критической (723°С). При ручной дуговой сварке штучными электродами ширина зоны термического влияния составляет 3—6 мм. Обычно зона термического влияния имеет низкие механические свойства, поэтом у качество сварного соединения частично определяется свойствами и протяженностью зоны термического влияния.  [c.84]

Под сварным соединением понимается металл шва и околошовная зона основного металла. Околошовной зоной называется узкий участок основного металла вдоль шва, который в процессе сварки не расплавлялся, но подвергался воздействию высоких температур. V некоторых сталей на участке околошовной зоны при нагреве до критической температуры (723°С) и выше происходят структурные фазовые превращения (изменение формы и размеров зерен). Это явление называется вторичной кристаллизацией. Участок околошовной зоны таких сталей, на котором произошла вторичная кристаллизация, называется зоной термического влияния. При ручной дуговой сварке покрытыми электродами ширина зоны термического влияния может составлять 3—6 мм. В металле шва могу  [c.88]

Межкристаллитная коррозия проявляется в сварных швах, в зонах термического влияния, или — при несоответствующей термообработке — в самом основном металле, как результат структурных превращений, делающих границы зерен склонными к коррозионному разрушению. Это происходит чаще всего в результате выпадения карбидов хрома по границам зерен. Однако у некоторых типов сталей встречаются и другие структурные изменения, которые могут быть причиной повышенной склонности к структурной коррозии. Так, например, а-фаза влияет на коррозионную стойкость сталей не только в азотной кислоте, но и в 40—80% горячей серной кислоте.  [c.7]

При сварке малоуглеродистой стали тепловое воздействие дуги не вызывает существенных изменений свойств околошовной зоны и режим, выбранный исходя из условий наилучшего формирования шва, обеспечивает необходимые качества сварного соединения. При сварке же легированных сталей как в металле шва, так и в зоне термического влияния могут произойти такие структурные превращения, которые окажут существенное воздействие как на прочностные, так и на пластические свойства сварного соединения. Поэтому удовлетворительное формирование швов является необходимым, но  [c.500]

Значительная часть тепла сварочной дуги, выделенная в зо-ше сварки, в результате теплопроводности отводится в основной металл. Основной металл зоны термического влияния нагрева- тея до высоких температур и вследствие этого претерпевает >структурные превращения. Температура нагрева участков зоны термического влияния, удаленных на разное расстояние от сварного щва, различна. Кроме того, эти участки нагреваются И охлаждаются с различной скоростью. В зоне термического влияния практически происходит. своеобразная термическая обработка, причем отдельные участки зоны термического влияния, различно удаленные от сварного щва, имеют различные термические циклы. Вследствие этого в зоне. термического влияния наблюдается целый ряд структур, более или менее плавно переходящих одна в другую от сварного шва к основному металлу.  [c.36]

Теплота, выделяемая при сварке, распространяется вследствие теплопроводности в основной металл. В каждой точке околошовной зоны температура вначале нарастает, достигая максимума, а затем снижается. Чем ближе эта точка расположена к границе сплавления, тем быстрее в ней происходит нагрев металла и тем выше максимальная температура нагрева. Поэтому структура и свойства основного металла в различных участках зоны термического влияния различны. Протяженность зоны термического влияния и характер структурных преврашений в ней зависят от состава и теплофизических свойств свариваемого металла, способа и режима сварки, типа сварного соединения и т.п. Основной металл — нагартованный или после отжига на снятие напряжений — претерпевает в этой зоне возврат и рекристаллизацию. Если свариваемый материал является полиморфным, т. е меняет кристаллическую решетку в зависимости от температуры, то в зоне термического влияния сварки происходят фазовые превращения. Степень развития этих превращений в каждом слое зоны зависит от максимальной температуры нагрева слоя, длительности нахождения выше температуры фазового превращения, скорости нагрева и охлаждения.  [c.52]


Сварные соединения, выполненные сваркой плавлением, можно разделить на несколько зон, отличающихся макро- и микроструктурой, химическим составом, механическими свойствами и другими признаками сварной шов, зону сплавления, зону термического влияния и основной металл (рис. 5.1). Характерные признаки зон связаны с фазовыми и структурными превращениями, которые претерпевают при сварке металл в каждой зоне.  [c.95]

Основными показателями свариваемости низкоуглеродистых бейнитно-мартенситных сталей являются сопротивляемость сварных соединений холодными трещинам и хрупкому разрущению и механические свойства зоны термического влияния, которые прежде всего связаны с фазовыми превращениями и структурными изменениями в стали при сварке. На основе этих показателей определяют технологические и конструктивные условия получения сварных соединений, удовлетворяющих эксплуатационные требования к сварной конструкции.  [c.184]

В настоящее время исследователи и практики в области сварки располагают более широкими возможностями воздействия на металл сварных швов, чем на основной металл в зоне термического влияния и особенно в околошовной ее участке. К этим мерам улучшения свойств сварных швов относятся использование присадочного металла, отличающегося от основного металла химическим составом или малым содержанием вредных примесей применение защитных газов или специальных модифицирующих галоидных бескислородных флюсов, сварка без присадочного металла и т. д. Известные меры воздействия на основной металл в околошовной зоне и других участках зоны термического влияния (регулирование скорости охлаждения, длительности пребывания металла выше определенной критической температуры и т. п. путем изменения погонной энергии источников теплоты, применения специальных видов технологии многослойной сварки и подогрева, термообработки до и после сварки) не всегда приводят к положительным результатам. В большинстве случаев это обусловлено недостаточной исследованностью кинетики фазовых превращений и структурных изменений в специфических условиях термического цикла сварки, а в ряде случаев неудачной композицией основного металла и неправильным выбором присадочных материалов.  [c.8]

Монография состоит из семи глав. В гл. I рассмотрены основные положения теории фазовых превращений в металлах и сплавах в твердом состоянии, а также закономерности превращений железа, титана и их сплавов в изотермических условиях. В гл. II показаны условия их протекания в зоне термического влияния при сварке плавлением. В гл. III описаны новые методы и аппаратура для изучения кинетики фазовых превращений и изменений структуры и свойств металлов в неравновесных условиях при сварке и термомеханической обработке, а также для исследования задержанного разрушения и образования холодных трещин. В гл. IV приведены результаты исследования превращений при непрерывном нагреве, кинетики роста зерна и гомогенизации аустенита и Р-фазы сплавов титана при сварке. В гл. V рассмотрены основные закономерности фазовых превращений в условиях непрерывного охлаждения при сварке. В гл. VI изложен механизм задержанного разрушения сталей и сплавов титана, установлены критерии оценки этого явления и показано влияние легирующих элементов, параметров термического цикла и жесткости сварных соединений на" сопротивляемость этих материалов образованию холодных трещин при сварке. В гл. VII приведены характеристики свариваемости сталей и сплавов титана различных структурных классов и систем легирования, сформулированы критерии выбора технологии и режимов их сварки и показаны пути регулирования структуры и свойств сварных соединений как в процессе сварки, так и при последующей термической, термомеханической или механико-термической обработке.  [c.10]

СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ В СВАРНОМ ШВЕ И ЗОНЕ ТЕРМИЧЕСКОГО ВЛИЯНИЯ  [c.178]

Трещины являются наиболее опасным дефектом сварного соединения. Они могут образовываться как в самом шве, так и в основном металле, в зоне термического влияния. Причинами возникновения трещин являются внутренние напряжения, возникающие в металле в результате неравномерного нагрева и структурных изменений в зоне термического влияния повышенная хрупкость металла при температурах, близких к линии со-лидуса жесткость свариваемого узла или конструкции. Чаще всего образование трещин наблюдается при сварке жестких конструкций из сталей, подверженных закалке, в которых зона термического влияния обладает пониженными пластическими свойствами. При сварке закаливающихся конструкционных сталей, претерпевающих в околошовной зоне объемные изменения, связанные с мартенситными превращениями, внутренние напряжения достигают особенно больших значений и во многих случаях, при значительной хрупкости металла, приводят к образованию трещин.  [c.189]

Чувствительность металла к тепловому воздейств ИЮ сварки является одним из главных показателей свариваемости. В сварном соедин 1ии под действием термического цикла сварки происходят рост зерна, структурные и фазовые превращения в шве и зоне термического влияния, изменение прочностных и пластических < войств. Как правило, чем выше прочность свариваемого материала и больше степень его легирования, тем чувствительнее материал к термическому циклу сварки и сложнее технология его сварки.  [c.41]

Зона термического влияния (ЗТВ) — участок основного металла, примыкающий к сварному шву, в пределах которого вследствие теплового воздействия сварочного источника нагрева протекают фазовые и структурные превращения. Это часто приводит к тому, что ЗТВ имеет отличные от основного металла вторичную микроструктуру и величину зерна. В ЗТВ выделяют околошовную зону (ОШЗ). Она располагается непосредственно у сварного шва и состоит из нескольких рядов крупных зерен, в том числе оплавленных. Поверхность сплавления отделяет металл шва, имеющий литую макроструктуру, от ЗТВ в основном металле, имеющем макроструктуру проката или рекристаллизо-  [c.490]

Как известно, шероховатость или чистота поверхности при механической обработке определяется в первую очередь прочностными свойствами обрабатываемого материала. При сварке плавлением воздействие термического цикла сварки вызывает в металле структурно-химические изменения, обус-ловливаюшие неоднородность прочностных свойств сварного соединения. Так, сварные соединения, выполненные из закаленных низколегированных сталей, характеризуются двумя основными участками неоднородности в зоне термического влияния (1 — разупрочненный участок, обусловленный сварочным нагревом стали до температуры Ас 2 - участок полной перекристаллизации, нагревающийся выше температуры конца фазового а—у превращения вплоть до температуры плавления). Регламентируемый уровень прочности сварных соединений из стали 09Г2С соответствует разупрочнению участка 1 на 11—13 % и упрочнению участка 2 на 8—10 %. Для стали 16ГМЮЧ соответственно 15—17 % и 10—13 %. В отдельных случаях относительное разупрочнение свариваемых сталей может превышать 40%.  [c.91]


Распределение остаточных напряжений может существенно измениться в результате структурных превращений в зоне, непосредственно примыкающей к сварному шву. Величина этой зоны зависит от режима и способа сварки (20—25 мм при электродуговой и до 80 мм при газовой сварке). Обычно эту зону, называемую зоной термического влияния, условно делят на шесть участков неполного расплавления (температура около 1500°С), перегрева (температура 1080—1500°С) нормализации (темпе-ратурга 850—1080° С) неполной перекристаллизации (температура 720—850°С), рекристаллизации (температура 500—720°С) синеломкости (температура менее 500°С). В смежных участках возможно образование структур, отличающихся по параметрам кристаллической решетки и по удельному объему.  [c.284]

При сварке полиморфных металлов и пх сплавов в шве и зоне термического влияния протекают фазовые и структурные превращения. Полной вторичной перекристаллизации подвергаются шов и околошовная зона, нагреваемая при сварке выше температуры аллотропического превращения. В условиях быстрого охлаждения в этих участках возможна закалка с образованием метастабиль-ных структур и резким снижением пластических свойств сварного соединения (мартенсит в легированных сталях перлитного и мартенситного класса, углеродистых сталях, титане, цирконии и их сплавах). В околошовной зоне вследствие высокотемпературного нагрева наблюдается перегрев и 1нтенсивны1"1 рост зерна. В этой зоне пластические Boii TBa ос Ювного металла обычно снижаются иаиболее резко, особенно в тех случаях, когда перегрев сочетается с последую-)цей закалко .  [c.153]

Металл в зоне сварного соединения испытывает нагрев и последующее охлаждение. Изменение температуры металла во время сварки называется термическим Щ1КЧ0М сварки. Максимальная температура нагрева в разных участках соединения различна. В зоне термического влияния температура нагрева изменяется от температуры плавления металладо комнатной температуры. При этом в металле происходят различные структурные и фазовые превращения.  [c.18]


Смотреть страницы где упоминается термин Структурные превращения в сварном шве и зоне термического влияния : [c.139]    [c.33]   
Смотреть главы в:

Газовая сварка и резка металлов Изд.2  -> Структурные превращения в сварном шве и зоне термического влияния



ПОИСК



Зона термического влияния

Превращение

Превращение структурное



© 2025 Mash-xxl.info Реклама на сайте