Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СРЕДЫ Термическая обработка

Хромистая нержавеющая сталь марки Ж1 с содержанием хрома до 14% н углерода до 0,15% относится к мартенситному классу специальных сталей. Эта сталь применяется после термической обработки для изготовления деталей, которые не подвержены большим напряжениям и ударным нагрузкам (детали аппаратуры для синтеза метанола, турбинные лопатки, клапаны гидравлических прессов, арматура, болты, гайки и др.), работающих в условиях воздействия пара, воды, влажной атмосферы и некоторых других сред. Термическая обработка стали состоит в закалке и последующем отпуске на требуемую твердость.  [c.228]


Обычно при химико-термической обработке деталь помещают в среду, богатую элементом, который диффундирует в металл.  [c.318]

Как и при других видах химико-термической обработки, диффузионную метал/-изацию можно проводить в твердых, ЖИДКИХ и газообразных средах.  [c.339]

Проведенные исследования и практика термической обработки инструмента показали, что наилучшие результаты достигаются при твердости незакаленной сердцевины HR 40—45. При более высокой твердости могут появиться поверхностные трещины, при меньшей могут возникать внутренние-кольцевые трещины, располагающиеся в переходной зоне. Так как твердость в сердцевине зависит не только от прокаливаемости стали данной плавки и среды охлаждения, но и от размеров изделия (рис. 310, а), то необходимо учитывать эти факторы и для данного размера сечения инструмента назначать сталь соответствующего балла по прокаливаемости, обеспечивая получение в сердцевине твердости, равной НДС 40—45.  [c.413]

Основными видами термической обработки являются отжиг и закалка. Операцию отжига используют для повышения технологических свойств при производства деталей из тугоплавких металлов. Отжиг снижает прочностные характеристики и в несколько раз повышает пластичность материала, что облегчает дальнейшую обработку давлением (ковка, протяжка, прокатка и т. д.). Наличие пор в материалах делает их чувствительными к окислению при нагреве и к коррозии при попадании закалочной жидкости в поры при закалке. В качестве охлаждающих сред необходимо выбирать жидкости, не представляющие опасности с точки зрения коррозии в процессе хранения и эксплуатации закаленных деталей. В некоторых случаях детали из железного порошка подвергают науглероживанию методами химикотермической обработки — нагреву в ящиках с карбюризатором или в газовой науглероживающей атмосфере. Процесс насыщения углеродом протекает значительно быстрее вследствие проникания газов внутрь пористого тела.  [c.425]

Жидкие металлы используют в технике в качестве нагревающей среды при термической обработке металлов (РЬ), для охлаждения клапанов двигателей внутреннего сгорания (Na — рис. 102), в качестве теплоносителя в котлах бинарного цикла (Hg—Н2О) и в ядерных реакторах, особенно в реакторах на быстрых нейтронах (Na, К, Na + К, Li, Ga Hg, Sn, Bi, Pb, Pb -f- Bi и др.).  [c.142]

При химико-термической обработке происходит поверхностное насыщение стали соответствующим элементом (С, N, А1, Сг, Si и др.) путем его диффузии в ат( марном состоянии из внешней среды (твер дой, газовой, паровой, жидкой) при высокой температуре.  [c.227]


В зависимости от насыщающей среды используют различные виды химико-термической обработки.  [c.137]

Марка стали Химический состав, % Термическая обработка (температура, С и охлаждающая среда) Мн/м- В Мн/м 6. % Р. %  [c.186]

На практике влияние термообработки наблюдается редко, так как в обычных средах скорость коррозии лимитируется диффузией кислорода. Однако при переработке кислых пластовых вод нефтяных скважин иногда наблюдается значительная локальная коррозия в околошовных зонах или на стыках стальных обсадных труб. Эта коррозия, сосредоточенная на ограниченных участках внутренней поверхности труб, называется кольцевой . Она вызвана термическими воздействиями при изготовлении и монтаже оборудования и может быть снижена с помощью специальной термической обработки труб или добавлением ингибиторов в пластовые воды [50].  [c.130]

Степень сенсибилизации для данной температуры и времени сильно зависит от содержания в сплаве углерода. Нержавеющая сталь 18-8, содержащая 0,1 % С или более, может быть заметно сенсибилизирована при нагревании в течение 5 мин при 600 °С. В то же время аналогичная термическая обработка сходной стали, содержащей 0,06 % С, оказывает меньшее воздействие, а при содержании углерода 0,03 % сталь не подвергается заметным разрушениям при выдержке в умеренно агрессивных средах. Чем выше содержание никеля в сплаве, тем меньше времени требуется для сенсибилизации при данной температуре. Легирование сталей молибденом увеличивает это время [13].  [c.304]

Сплав 8-Ь1 представляет собой смесь двух фаз преобладающей а-фазы (гексагональной плотноупакованной) и некоторого количества -фазы (кубической объемно-центрированной). Наблюдающиеся трещины проходят по зернам а-сплава, однако р-фаза подвергается пластическим разрушениям. Термическая обработка и изменение состава (например, понижение содержания алюминия), способствующие образованию Р-фазы, увеличивают стойкость к КРН. Состав фазы также может иметь определяющее значение установлено, что в ряде других титановых сплавов р-фаза склонна к КРН [37]. Механизм растрескивания,титановых сплавов находится еще на стадии обсуждения. Однако влияние структуры сплава, особенностей среды, а также действие посторонних анионов и приложенного напряжения в значительной степени сходно с влиянием этих факторов на поведение нержавеющих сталей (см. разд. 7.3.1 и 7.3.2). Это, по-видимому, свидетельствует об идентичности механизма КРН титана и нержавеющих сталей.  [c.377]

Жаропрочные малоуглеродистые стали на основе 2-12% хрома благодаря сравнительно низкой стоимости, высокой теплопроводности, малого температурного коэффициента линейного расширения и хорошей релаксационной способности, возможности регулирования механических свойств в широких пределах посредством термической обработки и относительно высокой коррозионно-механической стойкости являются наиболее приемлемыми и отвечают эксплуатационным требованиям, предъявляемым к конструктивным элементам технологических установок нефтеперерабатывающих и нефтехимических заводов. Повышение содержания хрома и дополнительное легирование карбидообразующими присадками оказывают положительное влияние на коррозионную стойкость этих сталей в горячих средах основных процессов переработки нефти, коррозионная активность которых прежде  [c.94]

Сплав альфенол является относительно дешевым материалом, и широко применяется для магнитной звукозаписи, так как у него велико сопротивление истиранию. Этот сплав имеет также удовлетворительные антикоррозионные свойства в некоторых агрессивных средах. Термическая обработка сплава следующая отжиг при 1000° С, охлаждение с печью до 600° С и последующее охлаждение на воздухе.  [c.150]

Электрохимическое травление позволяет ускорять обычное химическое травление в 3—5 раз. Электрохимическое или кямнческое травление поверхностей заготовок применяют для удаления окисных или солевых пленок, образующихся на поверхности металла в результате химического воздействия среды, термической обработки заготовок. Удаление этих пленок позволяйт в отдель-  [c.161]


В ненапряженных конструкциях применяют стали обыкновенного качества, так как сталь не испытывает больших напряжений (СтЗ, Ст5), а в предварительно напряженных конструкциях — сред(геуглеродистые и высокоуглеродистые стали в горячекатаном состоянии, а также упрочненные термической обработкой.  [c.402]

В некоторых случаях при очень быстром движении коррозионной среды или при сильном ударном механическом действии ее на металлическую поверхность наблюдается усиленное разрушение не только защитных пленок, но н самого металла, называемое кавитационной эрозией. Такой вид разрушения металла наблюдается у лопаток гидравлических турбин, лопаете пропеллерных мешалок, труб, втулок дизелей, быстро-ходшчх насосов, морских гребных винтов и т. п. Разрушения, вызываемые кавитационной эрозией, характеризуются появлением в металле трещин, мелких углублений, переходящих в раковины, и даже выкрашиванием частиц металла. С увеличением а1-рессивности среды кавитадиоппая устойчивость конструкционных металлов и сплавов понижается. Кавитационная устойчивость металлов и сплавов в значительной степени зависит не только от природы металла, но н от конфигурации отдельных узлов машин и аппаратов, их конструктивных особенностей, распределения скоростей потока жидкостей и др. Известно также, что повышение твердости металлов повышает их кавитационную стойкость. Этим объясняется, что для борьбы с таким видом разрушения обыч)ю применяют легированные стали специальных марок (аустенитные, аустенито-мартенситные стали и др.), твердость которых повышают путем специальной термической обработки.  [c.81]

Под изломом понимают поверхность, образую1цуюся в результате разрушения металла. Вид излома определяется условиями нагружения, кристаллографическим строением и микроструктурой м -талла (сплава), формируемой технологией его выплавки, обработ и давлением, термической обработки, температурой и средой, в ко-торых работает конструкция.  [c.13]

Закалка заключается в нагреве стали на 30—50 С выше Ас для до-эвгектоидшлх сталей или на 30—50 °С выше A i для заэвтектоидных сталей, выдержке для завершения фазовых превращений и последующем охлаждении со скоростью выше критической (рис. 127). Для углеродистых сталей это охлаждение проводят чаще в воде, а для легированных — в масле или других средах. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после закалки подвергают отпуску.  [c.199]

Выбор среды для нагрева при термической обработке. При нагреве в пламенных или электрических печах взаимодействие печной атмосферы с поверхностью нагреваемого изделия приводит к окислению и обезуглероживанию стали. Для предохранения изделий от окисления и обезуглероживания в рабочее пространство иечи вводят защитную газовую среду (контролируемые атмосферы).  [c.203]

Более широкие возможности представляет использование повы-шепиого давления. В США охлаждение под давлением в среде азота используют для различной объемной термической обработки, а также при охлаждении в потоке газов Hj, N2, Аг, Не после нагрева в вакууме.  [c.206]

Марка Чимический состав. Че Термическая обработка (температура. "С и охлаждающая среда) 3 5, %  [c.184]

Отсутствие N1 обеспечивает достаточную антикоррозионную стойкость сильхромов в среде сернистых газов. Однако эти стали склонны к охрупчиванию, что может быть несколько уменьшено термической обработкой.  [c.204]

Механические свойства стали 1X13 зависят от режимов термической обработки. Так, если закалка с 1000° С и отпуск при 700° С, то <Тз — 600 Мн1м , Со. 2 = 400 Мн м , 8 = 20%, ф =60% и а = = 900 кдж м . Сталь применяют для работы в слабоагрессивных средах при температурах до 30° С.  [c.266]

Напряжения в металле могут быть остаточными после механической или термической обработки или приложенными извне. Трещины могут быть межкристаллитными или транскристаллит-ными, в зависимости от свойств металла и коррозионной среды. Разрушения этого вида в корне отличаются от межкристаллитной коррозии, которая не зависит от того, находится металл в напряженном состоянии или нет.  [c.29]

В кислой среде (pH < 4) диффузия кислорода перестает быть лимитирующим фактором и коррозионный процесс частично определяется скоростью выделения водорода, которая, в свою очередь, зависит от водородного перенапряжения на различных примесях и включениях, присутствующих в специальных сталях и чугунах. Скорость коррозии в этом диапазоне pH становится достаточно высокой, и анодная поляризация способствует этому (анодный контроль). Низкоуглеродистые стали корродируют в кислотах G меньшей скоростью, чем высокоуглеродистые, так как для цементита Feg характерно низкое водородное перенапряжение. Поэтому термическая обработка, влияющая на количество и размер частиц цементита, может значительно изменить скорость коррозии. Более того, холоднокатаная сталь корродирует в кислотах интенсивнее, чем отожженная или сталь со снятыми напряжениями, так как в результате механической обработки образуются участки мелкодисперсной структуры с низким водородным перенапряжением, содержащие углерод и азот. Обычно железо не используют в сильнокислой среде, поэтому для практических нужд важнее знать закономерности его коррозии в почвах и природных водах, чем в кислотах. Тем не менее существуют области  [c.107]

Сплав, содержащий меньше молибдена, больше хрома и железа, чем хастеллой С, и примерно 2 % (Nb + Та), также стоек в окислительных и восстановительных средах хастеллой F, см. рис. 22.1 и табл. 22.1). Благодаря высокой стойкости в H2SO3 и SO2 его применяют для изготовления автоклавов, контактирующих с сульфитной пульпой. Вследствие высокого содержания никеля, он стоек к КРН. Термическая обработка сплава идентична процедуре отжига—закалки, описанной для хастеллоя В в разд. 22.2.4. Хастеллой G-3 имеет близкий состав, но содержит еще  [c.368]


В растворе, насыщенном H S и содержащем 5 % Na l и 0,1 % уксусной кислоты (имитация кислой среды газовых скважин), разрушение сплава зависит от температуры и скорости равномерной коррозии, которая преобладает в этих условиях и приводит к образованию водорода. При комнатной температуре разрушение вследствие водородного растрескивания (называемого иногда также сульфидным растрескиванием) протекает обычно только в том случае, если обработанные холодным способом сплавы были подвергнуты последующей термической обработке (состарены на заводе-изготовителе). Старение сплавов, увеличивающее их прочность, может приводить также к усилению равномерной коррозии в кислотах. При этом количество выделяющегося водорода становится достаточным, чтобы вызвать растрескивание. При повышенной температуре разрушения этого типа обычно уменьшаются (меньше водорода проникает в металл и больше удаляется в виде газа). Однако в области повышенных температур водородное растрескивание может смениться КРН, которое связано с присутствием хлоридов. В этом случае контакт сплавов с более активными металлами предотвращает растрескивание (протекторная защита).  [c.371]

Исследование микроструктуры. Исследование микроструктуры дает возможность более глубоко изучить структуру основного металла и характерных зон сварного соединения, чем исследование макроструктуры. По микроструктуре обследуемого объекта можно установить 1) характер изменения структуры металлов и сплавов после деформации, различных видов термической обработки и других технологических операций, а также коррозионных или эрозионных воздействий на материал рабочей среды в аппарате 2) установить форму и размер структурных составляющих, микроскопических трещин и т.п. повреждений металла 3) структуру наплавленного металла, структуру, образовавшуюся в зоне термического влияния 4) примерное содержание углерода в основном и наплавленном металле и в различных участках шва 5) приблизительный режим сварки и скорость ох.1тажде-ния металла шва и зоны термического влияния 6) количество слоев сварного шва и дефекты шва и структуры.  [c.308]

С участием научных сотрудников центра разработаны уник ип.ные технологии ремонтной сварки нефтепродуктопроводов и колонной аппаратуры под рабочим давлением способами ручной электродуговой и полуавтоматической сварки в среде углекислого газа. Впервые в отечественной практике нефтеперерабатывающих предприятий внедрена технология объемной термической обработки крупногабаритных змеевиков трубчатых печей из жаропрочных хромомолибденовых сталей со значительным экономическим эффектом. Проводятся комплексные исследованм по обеспечению конструктивной прочности нефтегазохимического оборудования. Центром совместно с АООТ ВНИИнефтемаш разработаны и введены в действие Программа обследования технического состояния сосудов и аппаратов технологических установок нефтеперерабатывающих и химических производств , Методика оценки технического состояния и определения срока эксплуатации трубчатых печей нефтеперерабатывающих и нефтехимических производств , Программа обследования технического состояния хранилищ жидкого аммиака .  [c.409]

Среди цутей улучшения радиационной стойкости материалов яривлвкательными выглядят механико-термическая обработка и холодная деформация-  [c.100]

Все перечисленные теории связывают склонность сплавов к МКК со структурными изменениями, т.е. с выделениями новых фаз (в основном карбидных) на границах зерен, которыэ могут происходить при термической обработке и других видах химмко-металлургическо-го и термического воздействия, например, при сварке, пайке, наплавке. В последующих случаях МКК обычно проявляется в зоне термического влияния. Развитие МКК зависит как от состава сплавов, так и от коррозионной среды и имеет, как правило, электрохимический механизм.  [c.84]

Вольфрам — чрезвычайно тяжелый твердый металл серого цвета. Среди металлов он обладает наиболее высокой температурой плавления (3380°С). Вольфрам получают из руд различного состава главным образом из вольфрамита пРе Л 04хгаМп Л 04 и шеелита Са 04 промежуточным продуктом является вольфрамовая кислота Н21У04, из которой путем восстановления водородом при нагреве до 900 °С получают металлический вольфрам в виде мелкого порошка с размером зёрен 1...7 мкм. Из этого порошка прессуют стержни, которые подвергают сложной термической обработке в атмосфере водорода, ковке и волочению в проволоку (диаметром до 0,01 мм), прокатке в листы и т. п.  [c.28]

Хшшко-термической обработкой (КТО) называют поверхностное насыщение стопи соответствующими элементами путем ис диффузии в атомарном состоянии из внешней среды при высоких температурах.  [c.75]

Назначьте температуру закалки, охлаждающую среду и гемпературу отпуска калибров из стали У12А. Опишите сущность происходящих превращений, микроструктуру и твердость инструментов после термической обработки.  [c.146]

Для изготовления деталей, работающих в активных коррозионных средах, выбрана сталь 08Х18Н12Т. Укажите состав и объясните причины введения легирующих элементов в эту сталь. Назначьте и обоснуйте режим термической обработки и опишите микроструктуру данной стали после термической обработки.  [c.153]

Использование термического воздействия в процессах комплексного модифицирования целесообразно на стадии послерадиационной обработки в случаях облучения твердых сплавов сильноточными ионными и электронными пучками. Эффективным видом послерадиационной термической обработки твердосплавных материалов, применяемых при резании на высоких скоростях, является вакуумный отжиг в газовой среде, например в аргоне. Низкоэнергетическая обработка ионами аргона позволяет снизить уровень остаточных напряжений, вызванных облучением, а также "залечить" поверхностные дефекты, вызванные воздействием сильноточного пучка,  [c.231]


Смотреть страницы где упоминается термин СРЕДЫ Термическая обработка : [c.405]    [c.227]    [c.234]    [c.309]    [c.406]    [c.111]    [c.246]    [c.279]    [c.111]    [c.364]    [c.76]    [c.31]    [c.28]    [c.311]   
Справочник машиностроителя Том 5 Изд.2 (1955) -- [ c.666 ]



ПОИСК



Обработка деформационно-термическая в газовой среде

Обработка деформационно-термическая в жидкой среде

Обработка деформационно-термическая твердой среде

Обработка среды

Отливки из марганцовистой стали магниевые — Термическая обработка в воздушной среде Режимы

СОСТАВЫ НАГРЕВАТЕЛЬНЫХ, ЗАКАЛОЧНЫХ И ЗАЩИТНЫХ СРЕД ПРИ ТЕРМИЧЕСКОЙ ОБРАБОТКЕ И НАГРЕВЕ ПОД ГОРЯЧУЮ ОБРАБОТКУ МЕТАЛЛОВ

СРЕДЫ Твердость после термической обработки

Сплавы магниевые в отливках Термическая обработка в воздушной среде — Режимы

Термическая обработка деталей отливок магниевых в воздушной среде — Режимы

Технология термической обработки, анализ закалочные среды

Технология термической обработки, анализ скорость охлаждения стали в различных средах



© 2025 Mash-xxl.info Реклама на сайте