Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллизация металла шва и образование трещин

КРИСТАЛЛИЗАЦИЯ МЕТАЛЛА ШВА И ОБРАЗОВАНИЕ ТРЕЩИН  [c.130]

Кристаллизация металла шва и образование трещин  [c.22]

Горячие и холодные трещины (ГТ и XT) в ОМ возникают под действием собственных напряжений, образующихся при сборке, нагреве под пайку, кристаллизации металла шва и охлаждения паяного изделия. Трещины в ОМ могут образоваться под действием расплавленного припоя. Образование трещин часто наблюдается в швах, спаянных припоями, имеющими широкий интервал кристаллизации, а также за-грязненных примесями, см. п.2  [c.152]


В основном металле горячие и холодные трещины возникают под действием собственных напряжений, образующихся при сборке, нагреве под пайку, кристаллизации металла шва и охлаждении паяного соединения. В основном металле трещины могут образоваться под действием расплавленного припоя. Появлению трещин может способствовать проникновение припоя по границам зерен основного металла, что ослабляет связи между ними. При наличии собственных напряжений или внешней нагрузки это приводит к образованию трещин.  [c.37]

При сварке меди необходимо учитывать специфические свойства этого металла, из которых главными являются высокая теплопроводность, большая жидкотекучесть и значительная активность металла при взаимодействии с кислородом и водородом в расплавленном состоянии. Вследствие высокой теплопроводности меди (почти в 6 раз большей, чем у стали) для сварки плавлением необходимо применять источники нагрева с большой тепловой мощностью, а также повышенную по сравнению со сталью погонную энергию. Высокие тепло- и температуропроводность приводят также к существенным скоростям охлаждения металла шва и околошовной зоны и малому времени пребывания сварочной ванны в жидком состоянии. Это ухудшает формирование шва и вызывает затруднения при металлургической обработке ванны. Улучшение формирования шва можно обеспечить с помощью предварительного подогрева. Предварительный и сопутствующий подогрев основного металла улучшает условия кристаллизации сварного шва, снижает внутренние напряжения и устраняет склонность металла шва к образованию трещин. Изделия толщиной более 10-15 мм подогревают газовым пламенем, рассредоточенной дугой и другими способами до следующей температуры из меди - 250-300 °С, латуни - 300-350 °С, бронзы - 500-600 °С.  [c.120]

При кристаллизации жидкий металл сварочной ванны переходит сначала в жидко-твердое, а затем в твердо-жидкое и, наконец, в твердое состояние. При этом в металле шва возможно образование трещин. В зависимости от температуры, при которой они образуются, трещины разделяются на горячие (высокотемпературные) и холодные (низкотемпературные).  [c.26]

Графики этих зависимостей приведены на рис. 9.16. Малая активность марганца как раскислителя создает большие остаточные концентрации марганца в металле, но они не влияют на механические свойства стали (до 1 %). При высоких температурах и достаточно малых концентрациях Мп остаточная концентрация кислорода превышает предел концентрации насыщенного раствора Li (см. с. 329 ), которая показана на рис. 9.16 штриховой линией. Несмотря на малую раскислительную активность, марганец широко применяется в сварочной металлургии, так как кроме кислорода он извлекает из жидкого металла серу, переводя ее в MnS, плавящийся при 1883 К, поэтому при кристаллизации металла шва влияние легкоплавкой сульфидной эвтектики понижается и повышается сопротивление металла образованию горячих трещин. Обобщенная диаграмма плавкости Me — S для железа, кобальта и никеля приведена на рис. 9.17, указаны температуры плавления сульфидных эвтектик, лежащих ниже температур кристаллизации стали, никеля и кобальта.  [c.328]


Электрошлаковая сварка. Важнейшая особенность способа - пониженная чувствительность к образованию горячих трещин, что позволяет получать чисто аустенитные швы без трещин. Это объясняется специфическими особенностями электрошлаковой сварки малой скоростью перемещения источника нагрева и характером кристаллизации металла сварочной ванны, отсутствием в стыковых соединениях угловых деформаций. Однако малая концентрация нагрева и скорость сварки, повышая длительность пребывания металла шва и околошовной зоны при повышенных температурах, увеличивают его перегрев и ширину околошовной зоны.  [c.371]

Другое затруднение при сварке алюминиевых сплавов обусловлено тем, что алюминий имеет высокий коэффициент линейного расширения (например, в 2 раза больше, чем у низкоуглеродистой стали). В результате при сварке возникают значительные остаточные напряжения и деформации, которые в сочетании с неправильным режимом охлаждения (чрезмерно резким) могут привести к образованию трещин в процессе завершения кристаллизации металла шва.  [c.125]

На меди обеспечивается достаточно чистая поверхность реза, но в зависимости от режимов плазменной резки на поверхности реза (особенно в нижней части) могут быть рыхлоты, возможно образование кислородной эвтектики Си — СизО. Причем, если процесс кристаллизации идет в восстановительной среде, содержащей водород, то могут появиться микротрещины в литом слое, т. е. возникает водородная болезнь меди [77]. В связи с этим при сварке меди и ее сплавов необходимо сварочную ванну тщательно раскислять еще в жидком состоянии с тем, чтобы в металле шва и в зоне сплавления не появились трещины и поры.  [c.110]

Ряд особенностей меди и ее сплавов создают суще-ственные затруднения при сварке. Легкая окисляемость меди в расплавленном состоянии снижает стойкость металла шва против образования кристаллизационных трещин. В меди, предназначенной для изготовления сварных конструкций, содержание кислорода не должно превышать 0,03%, а для ответственных изделий — 0,01 7о- Высокая теплопроводность меди (почти в 6 раз больше, чем у стали) требует использования концентрированных источников нагрева, а в ряде случаев предварительного и сопутствующего подогрева. Большая растворимость водорода в расплавленной меди и ее падение при кристаллизации вызывают образование пор. Часть растворенного в расплавленном металле водорода, взаимодействуя с окислом меди, образуют водяной пар и углекислый газ, которые при охлаждении металла не успевают выделиться, в результате чего появляются поры. При затвердевании медн пары воды увеличиваются в объеме, образуя в ней трещины. Та-  [c.17]

При кристаллизации металла шва под влиянием растягивающих напряжений могут образовываться кристаллизационные (горячие) трещины нарушающие сплошность сечения и вызывающие брак конструкции. Определение стойкости металла шва против возникновения кристаллизационных горячих трещин является первым видом испытания свариваемости. В зонах закалки металл имеет пониженную пластичности и могут образовываться околошовные холодные трещины. Испытание металла околошовной зоны, щва и сварного соединения в целом на склонность к образованию холодных трещин является вторым видом испытания свариваемости.  [c.668]

Сварку чугуна применяют для устранения различных дефектов литья при ремонте чугунных изделий, а также при изготовлении сварно-литых чугунных деталей и трубопроводов. Чугун относится к ограниченно свариваемым сплавам, так как оно обладает низкой пластичностью и склонен к отбеливанию при быстром охлаждении. Трещины возникают в процессе сварки, а также при остывании сварного соединения, когда возникают напряжения растяжения. Возможность образования трещин резко уменьщается, если свариваемая деталь предварительно нагрета до 350—600° С. Интенсивное газовыделение из сварочной ванны, которое продолжается, и на стадии кристаллизации может приводить к образованию пор в металле шва. Чтобы в процессе сварки обеспечить возможность получения структуры серого чугуна, в металл шва и около-шовной зоны вводят графитизаторы (кремний, углерод,  [c.674]


Основным критерием свариваемости, определяющим эксплуатационную надежность сварных соединений, является сопротивляемость образованию горячих и холодных трещин. Возникновение горячих трещин связано с химическим составом и условиями кристаллизации металла шва, что зависит от типа электродов, флюсов, защитных газов, типа сварного соединения, а также от числа проходов при сварке. Образование холодных трещин в первую очередь связано с химическим составом, толщиной свариваемых элементов, жесткостью сварного соединения и температурными условиями сварки.  [c.14]

Горячими трещинами называют микро-и макроскопические трещины, имеющие характер не-сплошности или надреза, которые образуются в сварных соединениях при высоких температурах, близких к температуре плавления в период кристаллизации металла. Возникают горячие трещины из-за неправильного жесткого закрепления свариваемых деталей, затрудняющего сокращение металла шва. С увеличением в металле шва элементов, образующих химические соединения с низкой температурой затвердевания, а также элементов карбидообразователей и элементов, обладающих ограниченной растворимостью в железе, вероятность образования горячих трещин увеличивается. Такие элементы, как сера и углерод, способствуют образованию горячих трещин, а с повышением содержания в металле шва марганца образование горячих трещин уменьшается. Это объясняется свойством марганца связывать серу в тугоплавкое соединение.  [c.47]

На процесс образования горячих трещин в металле шва влияют в основном химический состав металла шва, кристаллизация, форма сварного соединения и сварочной ванны и дополнительно — образование при кристаллизации пленок из неметаллических включений (в частности, сульфидов) по границам зерен. Высокопрочные легированные стали имеют ограниченное содержание углерода, никеля, кремния, серы и фосфора. Поэтому при соблюдении определенных технологических режимов сварки и правильном применении присадочных материалов задача получения металла шва без горячих трещин решается достаточно успешно.  [c.12]

Горячие трещины возникают в процессе кристаллизации металла шва, это микро- и макроскопические трещины, проходящие, как правило, по границам кристаллов, а потому вызывающие межкристаллическое разрушение. Причинами образования горячих трещин являются неправильное жесткое закрепление свариваемых деталей и повышенное содержание в металле шва 5, С, 51 и N1. Для уменьшения опасности образования горячих трещин необходимо применять сварочные материалы с повышенным содержанием Мп и минимальным количеством 5 и С, вводить в металл шва модифицирующие элементы (Т1, А1, Си), сваривать с предварительным подогревом и последующей термообработкой.  [c.225]

Склонность стали к образованию горячих и холодных трещин зависит от содержания углерода. Горячие трещины образуются в сварном шве в период кристаллизации. Образованию горячих трещин способствует расширение интервала кристаллизации металла шва. Интервал кристаллизации растет с увеличением содержания углерода. Металл шва и околошовной зоны нагревается выше критических точек. При охлаждении протекает процесс распада аустенита, сопровождающийся объемными изменениями. Чем выше содержание углерода, тем выше объемные изменения, тем больше опасность образования холодных трещин.  [c.186]

Медь в расплавленном состоянии интенсивно растворяет газы, особенно кислород и водород. С кислородом медь образует окислы, в частности закись между СнгО.. Закись меди может содержаться в основном металле из-за недостаточного раскисления последнего при выплавке. Растворяясь в меди, закись образует с ней эвтектический сплав, имеющий температуру плавления 068° С, т. е. более низкую, чем у чистой меди. При кристаллизации металла шва эвтектика располагается по границам зерен меди. Это может вызвать охрупчивание и растрескивание шва. Участок зоны термического влияния, нагретый до температуры около 1068° С, также может приобрести подобные свойства. Поглощенный медью водород, взаимодействуя с закисью меди, образует водяной пар, который, стремясь выделиться из металла шва, способствует образованию в ием пор и мелких трещин. Для предупреждения дефектов в швах содержание кислорода в свариваемой меди не должно превышать 0,03%, а для ответственных деталей— 0,01%.  [c.55]

Стойкость металла шва против образования горячих трещин зависит от величины и темпа нарастания растягивающих деформаций в процессе кристаллизации шва, формы сварочной ванны, величины первичных кристаллитов и химического состава металла шва.  [c.554]

Измельчение первичной структуры и изменение характера первичной кристаллизации подавлением столбчатой структуры могут повысить стойкость металла шва против образования горячих трещин. Меры подавления столбчатой структуры уже рассматривались в гл. XIX Образование первичной структуры и формирование металла сварного шва . Следует отметить, что увеличение скорости кристаллизации путем уменьшения объема сварочной ванны не дает существенного эффекта, так как снижает производительность сварки и уменьшает прочность сварного шва при остывании. Наклеп кромок связан с технологическими трудностями и не позволяет получить достаточного глубокого наклепанного слоя. Эффективно введение модификаторов через сварочную проволоку, флюс или покрытие.  [c.555]


Под влиянием сварки происходят изменения структуры и свойств металлов шва и околошовной зоны по сравнению с основным металлом. В процессе кристаллизации металла шва под воздействием возникающих при сварке растягивающих напряжений возможно образование кристаллизационных трещин, являющихся весьма серьезным дефектом (см. 6-2). Стойкость металла шва против кристаллизационных трещин является одним из важнейших показателей свариваемости. В металле шва могут появиться и холодные трещины. Образование их при сварке низкоуглеродистых и низколегированных сталей наблюдается относительно редко.  [c.144]

Кристаллизация металла шва и образование трещин. Сварные швы ослабляются также наличием зерен, зон напряжений и трещин, появляющихся при остывании и кристаллизации расплавленного металла. Зерна образуются всегда при кристаллизации металла, что неизбежно при переходе его из жидкого состояния в твердое. Кристаллизация металла сварочной ванны начинается в зоне сплавления от твердых кромок свариваемых деталей (рис. 4.2). Началом кристаллизации являются не полностью оплавленные зерна на кромках металла. Они наращиваются затвердевающими частицами металла сварочной ванны. Из сварочной ванны появляются зародыщи но-  [c.142]

Как показали исследования, проведенные в работе 1501, эффект, достигаемый многоступенчатой термической обработкой для деформированных сплавов на никелевой основе, объясняется регулированием выделения упрочняющей фазы 511з (Т1А1), ее дисперсности и характера распределения. Неравновесность кристаллизации металла шва и многокомпонентность системы легирования способствует образованию химической неоднородности за счет ликвации и появлению участков, обогащенных легирующими элементами. Это приводит к неравномерному распределению фаз, выпадающих в процессе термической обработки или эксплуатации при высоких температурах. В исходном состоянии после сварки сложнолегированного шва на никелевой основе, легированного молибденом, вольфрамом, титаном и алюминием, интер металл идные и карбидные фазы выделяются крупными фракциями по границам зерен. В поле зерна распределение фаз крайне неравномерно. Обогащенные фазами и примесями границы в этом состоянии обладают при высоких температурах пониженной деформационной способностью, и трещина, зародившаяся под нагрузкой по границе зерна, интенсивно далее по ней развивается. Эгому способствует также кристаллизационная ориентированность кристаллитов сварного шва и значительная протяженность прямых участков границы зерна. Аустенитизирующая термическая обработка ликвидирует ориентационную направленность структуры, зерна в результате ее проведения становятся равноосными. При этом проходит также перераспределение легирующих элементов и диффузионное рассасывание ликвационных участков. Последующее ступенчатое старение способствует более равномерному распределению фаз в матрице. Границы зерен становятся более тонкими (чистыми), чем у металла шва в исходном после сварки состоянии. Это приводит и к изменению характера деформации при длительном разрыве за счет включения в нее не только границ, но и тела зерна. Зародившиеся трещины при этом локализуются и имеют округлую форму, что обеспечивает высокую пластичность при длительном нагружении.  [c.246]

При сварке многокомпонентных сплавов алюминия стойкость металла шва к образованию трещин резко снижается при малых добавках элементов, вызывающих расширение интервала кристаллизации. Такими добавками являются, иаиример, магний в дюралюминии, медь в алюминиево-магниевых сплавах и др.  [c.419]

В однофазных швах с чисто аустенитной структурой горячие трещины образуются значительно чаще, чем в двухфазных аустенитно-ферритных. Однако до сих пор этот факт не получил достаточно полного объяснения. Предполагают, что дельта-феррит лучше растворяет многие примеси (ниобий, серу, фосфор и др.) и таким образом сокращает температурный интервал кристаллизации. Снижение содержания углерода также oKpauiaer интервал кристаллизации и приводит к улучшению свариваемости. Многие ферритообразующие элементы способствуют удалению серы из металла шва. К ним относятся алюминий, гитан, ванадий и хром. Удаление серы уменьшает опасность скопления легкоплавких эятектик по границам зерен и образования трещин.  [c.184]

Важнейшей особенностью ЭШС, обусловленной специфическими для этого способа сварки термическим циклом, малой скоростью перемещения источника нагрева, характером кристаллизации сварочной ванны, отсутствием, как правило, угловых деформаций, является высокая стойкость металла шва против образования горячих трещин. При ЭШС без особых ухищрений удается получить свободные от трещин чистоаустенитные швы на сталях и сплавах, которые лишь с большим трудом поддаются сварке под флюсом или ручной электродуговой сварке. При ЭШС, например, вовсе нет необходимости следить за обязательным наличием первичного феррита в металле шва. При ЭШС во многих случаях нет нужды столь строго ограничивать содержание фосфора и других вредных примесей в шве. При ЭШС, наконец, если говорить о получении швов без горячих трещин, нет нужды применять неокислительные флюсы-шлаки, столь необходимые при сварке под флюсом или ручной электродуговой сварке.  [c.325]

Горячие или кристаллизационные трещины образуются в металле, шва и околошовной зоне в процессе его кристаллизации, когда возникающие внутренние напряжения достаточны, чтобы вызвать разрушение по границам зерен. В зависимости от условий образования горячие трещины разделяются на кристаллизационные и подсолидусные. Трещины первого типа образуются, когда металл находится в твердожидком состоянии трещины второго типа возникают при температуре ниже температуры солидуса. В производстве сварных конструкций для определения сопротивления металла или сплава образованию трещин применяют количественную или качественную оценку. Количественную оценку проводят методом принудительного деформирования образцов, подвергнутых сварочному нагреву (деформирование под действием внешних сил).  [c.47]

Если в условиях кристаллизации металл шва подвергнуть внешней деформации растяжением, то для каждого сплава можно найти такую критическую скорость деформации, при которой в сварном шве появятся горячие трещины, т. е. запас пластичности в температурном интервале хрупкости будет исчерпан. Эта критическая скорость и является количественным критерием сопротивления образованию гор.ячих трещин.  [c.47]

Стойкость металла шва и околошовной зоны против образования кристаллизационных трещин можно повысить, используя в ряде случаев швы с малым коэффициентом формы, что способствует нормальной кристаллизации металла сварочной ванны предварительный подогрев изделия (его примеаение зависит от состава и свойств стали) и электроды с фтористо-кальциевым покрытием. Для получения плотных швов необходимо устранить причины, вызывающие появление пор, основным возбудителем которых является водород. При сварке высоколегированных сталей (нержавеющих) основными источниками водорода служат электродные покрытия, защитный газ, краски, масла и другие загрязнения. Поэтому электроды непосредственно перед сваркой следует прокаливать, тщательно осушать защитный газ, сварку фтористо-кальциевыми электродами выполнять на постоянном токе обратной полярности, что позволяет резко уменьшить опасность образования пор в металле шва. При сварке в аргоне некоторых аустенитных сталей появление пор наблюдается на границе сплавления. Для предотвращения этого к аргону добавляют 2—5% кислорода, который образует с водородом нерастворимый в металле гидроокисел.  [c.133]


Наиболее опасными дефектами в сварном соединении являются трещины (рис. 89). Появлению трещин в металле шва могут способствовать поры и неметаллические включения. Процесс разрушения начинается с образования зародышевой трещины, поэтому наличие в металле трещин является фактором, предрасполагающим к разрущению. Разрушение любого металла состоит из нескольких этапов — зарождение трещины, ее устойчивый рост и достижение критической длины, нестабильное развитие трещины. Существуют трещины двух типов — горячие и холодные. Стенки горячих трещин обычно сильно окислены, а у холодных — блестящие, чистые. Горячие трещины имеют межкристаллит-ное строение, в то время как холодные трещины, в основном, проходят через тело кристаллов. Горячие трещины обычно расположены в металле шва и могут образоваться в процессе кристаллизации металла под действием растягивающих напряжений, возникающих в процессе охлаждения сварного соединения. Холодные трещины чаще всего возникают в околошовной зоне, и реже в металле шва. В основном они образуются при сварке изделий из средне- и высоколегированных сталей перлитного и мартенситного классов. Но они могут появиться и в сварных соединениях из низколегированных сталей иерлитно-ферритного класса и высоколегированных сталей аустенитного класса.  [c.237]

Проба ИМЕТ для тонколистового металла 62]. Образец пробы представляет собой пластину постоянного размера (например, 80x50x1 мм) с надрезом, параллельным короткой стороне образца (рис. 48). Образцы проплавляют вольфрамовым электродом в струе аргона или электронным лучом так, чтобы ось шва проходила через вершину надреза. Проплавление начинают несколько отступя от края пластины, чтобы избежать образования продольной трещины в начале шва. Появление трещины от надреза зависит от расположения этого надреза по длине образца. Чем больше длина шва до надрезай, тем больше накопленная деформация усадки и больше темп нарастания деформации при кристаллизации металла шва в вершине надреза. В качестве критерия стойкости против образования горячих трещин принята максимальная длина шва до надреза, при которой в шве нет трещины.  [c.135]

В процессе кристаллизации металла шва под влиянием возникающих при сварке растягивающих напряжений возможно образование к эисталлизационных (горячих) трещин, нарушающих сплошность сечения и вызывающих брак конструкции. Определение стойкости металла шва против возникновения кристаллизационных горячих трещин является первым видом испытания свариваемости. В результате неравномерного нагрева происходит изменение структуры основного металла, граничащего со швом (околошовная зона). Так, например, при сварке углеродистых и. легированных сталей вследствие значительных скоростей охлаждения, характерных для про-  [c.489]

В процессе кристаллизации и охлаждения до нормальной температуры алюминий не претерпевает фазовых превращений и сохраняет крупностолбчатую дендритную структуру с преимущественным расположением загрязнений по границам кристаллитов, поэтому радикальное средство повышения стойкости металла шва к образованию горячих трещин — измельчение его первичной структуры.  [c.493]

Причиной возникновения кристаллизационных трещин в металле шва является образование легкоплавкой эвтектики Ni — NiS. Для предупреждения образования кристаллизаци-онньк трещин в расплавленный металл вводят элементы, связывающие в процессе сварки серу в более тугоплавкие, чем NiS, соединения. Такими элементами являются марганец и магний, образующие с серой тугоплавкие соединения MnS и MgS. Полезно для этой цели добавить в сварной шов небольшое количество титана. Пленка окиси никеля, имеющая температуру плавления 1650°С, т. е. вьппе температуры плавления основного металла, также затрудняет сварку.  [c.192]


Смотреть страницы где упоминается термин Кристаллизация металла шва и образование трещин : [c.244]    [c.42]    [c.294]    [c.146]    [c.65]    [c.36]    [c.362]    [c.13]    [c.133]    [c.40]    [c.224]   
Смотреть главы в:

Дуговая и газовая сварка  -> Кристаллизация металла шва и образование трещин

Сварка и резка металлов Издание 2  -> Кристаллизация металла шва и образование трещин



ПОИСК



Кристаллизация

Кристаллизация металла шва

Трещины образование



© 2025 Mash-xxl.info Реклама на сайте