Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растворимость водорода в металлах и сплавах

РАСТВОРИМОСТЬ ВОДОРОДА В МЕТАЛЛАХ И СПЛАВАХ  [c.106]

Ведутся большие работы по изучению диффузии, проницаемости и растворимости водорода в цветных литейных сплавах и по электромагнитному воздействию на металл, разрабатываются и совершенствуются методы рафинирования литейных сплавов с целью повышения герметичности и прочности, а также по созданию сплавов, стойких в агрессивных средах.  [c.73]

Одним из характерных дефектов является также пористость, связанная преимущественно с насыщением сварного соединения водородом вследствие различной растворимости газов в твердом и жидком состояниях, перемещения водорода из основного металла в зону сварки, реакций взаимодействия с примесями. Отмеченные обстоятельства требуют очень высокой культуры производства при сварке цветных металлов и их сплавов.  [c.132]


В настояш ее время разрабатывается теория и методика экспериментального определения диффузии, проницаемости и растворимости водорода в жидких сплавах на медной и железной основе, а также ведутся работы по определению содержания водорода и кислорода непосредственно в расплавленных черных металлах применительно к производственным условиям.  [c.73]

Ниже приводятся данные, относящиеся к поведению различных промышленных цветных металлов и сплавов в водороде. Показана растворимость в них водорода, диффузия водорода через эти сплавы, а также влияние содержания водорода или режима газонасыщения на механические свойства цветных металлов и сплавов.  [c.408]

Вольфрам и его сплавы, в отличие от большинства переходных металлов, поглощают незначительные количества водорода. По данным [36], вольфрам не поглощает водород при температурах ниже 1100—1200 °С. Согласно [37], растворимость водорода в вольфраме при давлении 1 ат составляет  [c.414]

Алюминий применяется в строительстве и промышленности благодаря небольшой плотности (2,7 г/см ), примерно в 3 раза меньшей, чем у стали, повышенной хладостойкости, коррозионной стойкости в окислительных средах и на воздухе. Алюминий и его сплавы имеют низкую температуру плавления (660 °С для чистого алюминия), высокую электро- и теплопроводность, повышенный по сравнению со сталью коэффициент линейного расширения. Алюминий и его сплавы существуют двух видов деформируемые (прессованные, катаные, кованые) и литейные (недеформируемые). Специфические свойства при сварке алюминия вызывают определенные трудности. Легкая окисляемость алюминия приводит к образованию на его поверхности плотной тугоплавкой окисной пленки, которая препятствует сплавлению частиц металла и загрязняет шов. Высокая температура плавления окисной пленки и низкая температура плавления алюминия, не изменяющего своего цвета при нагревании, крайне затрудняет управление процессом сварки. Большая жидкотекучесть и малая прочность при температуре свыше 550 °С вызывает необходимость применения подкладок. Значительная растворимость водорода в расплавленном алюминии и резкое ее изменение при переходе из л<идкого состояния  [c.16]

Ряд особенностей меди и ее сплавов создают суще-ственные затруднения при сварке. Легкая окисляемость меди в расплавленном состоянии снижает стойкость металла шва против образования кристаллизационных трещин. В меди, предназначенной для изготовления сварных конструкций, содержание кислорода не должно превышать 0,03%, а для ответственных изделий — 0,01 7о- Высокая теплопроводность меди (почти в 6 раз больше, чем у стали) требует использования концентрированных источников нагрева, а в ряде случаев предварительного и сопутствующего подогрева. Большая растворимость водорода в расплавленной меди и ее падение при кристаллизации вызывают образование пор. Часть растворенного в расплавленном металле водорода, взаимодействуя с окислом меди, образуют водяной пар и углекислый газ, которые при охлаждении металла не успевают выделиться, в результате чего появляются поры. При затвердевании медн пары воды увеличиваются в объеме, образуя в ней трещины. Та-  [c.17]


Ко второй группе относятся металлы, образующие с водородом гидриды, представляющие химическое соединение металла с водородом (палладий, цирконий, титан, ванадий, торий, тантал и редкоземельные элементы). При небольших количествах поглощенного водорода эти металлы образуют с ним твердые растворы, а при более значительных количествах — гидриды. Легирующие элементы оказывают самое разнообразное влияние на растворимость водорода в сплавах железа. Углерод, кремний, алюминий и хром снижают растворимость водорода в сплавах железа, а титан и ниобий ее увеличивают. Растворенный водород в сварочной ванне и его неполное выделение в период кристаллизации приводят к образованию дефектов пор, макро- и микротрещин в металле шва, а также холодных и горячих трещин в околошовной зоне.  [c.51]

Водород, как и азот, оказывает вредное воздействие на качество металла шва. В зависимости от температуры водород может находиться в молекулярном, атомарном или ионизированном состоянии. Степень диссоциации водорода зависит от температуры (см. рис. 7-10). В столбе дуги подавляющее количество водорода находится в атомарном состоянии. При дуговой сварке покрытыми электродами содержание водорода в металле шва в ряде случаев может превышать величину растворимости его в железе при равновесных условиях и температуре кристаллизации. Растворимость водорода в жидких сплавах железа зависит от концентрации легирующих элементов (рис. 7-14).  [c.312]

Из фиг. 7 видно, что растворимость водорода, учитывая значительный перегрев капель электродного металла и сварочной ванны, даже при небольших парциальных давлениях достаточно высока в зоне сварки при наличии высокой концентрации атомарного водорода имеются весьма благоприятные условия для поглощения водорода расплавленным металлом.. На растворимость водорода в железных сплавах оказывает заметное влияние легирующие элементы. По данным А. Н. Морозова [15], углерод, алюминий, хром, кремний снижают, а титан, повышает растворимость водорода в жидком железе. Растворимость водорода существенно зависит и от содержания кислорода в расплавленном металле. На фиг. 8 представлен график совместной растворимости водорода и кислорода (отношение [Н] к [О] постоянно) в расплавленном железе при парциальном давлении Ph =22 мм рт. ст. [13]. Из фиг. 8 видно, что при-повышении содержания в жидком железе кислорода (закиси железа) количество растворенного водорода снижается.  [c.19]

Цветные металлы и сплавы хорошо растворяют водород в расплавленном состоянии и резко уменьшают его растворимость при затвердевании. В результате в металле шва при быстром его охлаждении возникают поры.  [c.12]

Восстановительная атмосфера, содержащая водород, вредно влияет на качество выплавляемой меди и ее сплавов. Растворимость водорода в меди при температурах ИОО и 1400° соответственно достигает 6 и 12 см на 100 г металла. Присутствие в меди кислорода снижает растворимость водорода вследствие образования водяного пара, удаляющегося из металла..  [c.231]

Водород поглощается сталью н атомарном состоянии. При охлаждении сплава растворимость водорода уменьшается, и в молекулярной форме он накапливается с микропорах под высоким давлением, Таким образом, водород может стать причиной образования внутренних надрывов в металле (флокенов).  [c.14]

Азот увеличивает растворимость Fe и N в литии и термический перенос массы, азотирует поверхностный слой некоторых нержавеющих сталей. Водород в жидком сплаве натрия с калием вызывает охрупчивание ниобия. Присутствие углерода в жидком натрии приводит к науглероживанию поверхности нержавеющих сталей, находящихся в контакте с жидким металлом.  [c.147]

Сложность и большое число явлений, обусловливающих повышенную коррозионную стойкость металлов в водороде, не позволяют в настоящее время сформулировать научно обоснованную теорию водородостойкого легирования, хотя отдельные вопросы этой проблемы уже достаточно изучены. Водородной хрупкости металлов, влиянию водорода на свойства сталей, состоянию водорода в решетке металла, растворимости и диффузии водорода в металлах и сплавах посвящено большое число работ.  [c.114]


Воздействие водорода на сталь при повышенных температурах и давлениях связано, в основном, с раэрущением карбидной составляющей, вызывающим необратимые потери первоначальных свойств материала [1]. Такое физико-химическое явление принято в технике называть водородной коррозией стали. Ниже приведены справочные данные по растворимости и диффузии водорода в металлах и сплавах, методам защиты их от воздействия водорода, а также рекомендации по применению конструкционных сталей для изготовления оборудования, предназначенного для различных условий эксплуатации.  [c.335]

При, исследо1вааии скорости реакции чистого перегретого пара с такими металлами, как магний, кальций, алюминий и их сплавы, Кубашевакий с Эбертом [645] разработали простой метод, позволяющий производить непрерывные отсчеты. Этот метод дает количественные результаты, если при реакции НгО с металлами образуются только окислы металлов и если количество прореагировавшего пара сра1внительн0 велико, а растворимость водорода в металле мала.  [c.275]

Отмечены и значительные отличия в поведении водорода в аморфных и нанокристалличе-ских металлах, сплавах и соединениях по сравнению с обычными поликристаллическими объектами. На рис. 3.6 показаны изотермы абсорбции водорода интерметаллидом РеТ1 в аморфном, нано- и крупнокристаллическом состоянии. Для нанообъектов наблюдаются увеличение растворимости водорода в области твердого раствора, сужение двухфазной области и изменение равновесного давления для аморфных образцов — значительное изменение фазовых равновесий. Аналогичные результаты бьши получены для систем Ьа1 15—Н2 и М 2№—Н2. Наиболее подробно изучена классическая (для диаграмм металл — водород) система Рё — Н2.  [c.55]

Для коррозии металлов в кислых средах характерны свои особенности. Это прежде всего значительная зависимость скорости растворения металла от кислотности раствора. С уменьшением pH скорость коррозии в неокислительных кислотах возрастает. В подавляющем большинстве случаев скорость коррозии в кислых средах определяется реакцией (1.2), а благодаря большой подвижности ионов гидроксония практически не осложнена диффузионными затруднениями и протекает в чисто кинетической области. Это обуславливает, в сво(о очередь, несколько меньшую, чем для других видов коррозии, зависимость кислотной коррозии от перемешивания. Для многих металлов и сплавов продукты коррозии в кислых средах растворимы, что приводит к протеканию процесса с ускорением. Скорость коррозионного процесса на сталях и сплавах в кислых средах существенно зависит от их структуры, наличия примесей, дефектов, остаточных деформаций и т. п. И, наконец, коррозия в кислых средах, как правило, сопровождается поглощением металлом значительного количества водорода, что приводит к появлению водородной хрупкости.  [c.12]

При комнатной температуре поверхность титана растворяет кислород, образуется его твердый раствор в а-титане. Возникает слой насыщенного раствора, который предохраняет титан от дальнейшего окисления. Этот слой называют альфированным. При нагреве титан вступает в химическое соединение с кислородом, образуя ряд окислов от TigO до Ti02- По мере окисления изменяется окраска оксидной пленки от золотисто-желтой до темно-фиолетовой, переходящей в белую. По этим цветам в околошовной зоне можно судить о качестве защиты металла при сварке. С азотом титан, взаимодействуя активно при температуре более 500 °С, образует нитриды, повышающие прочность, но резко снижающие пластичность металла. Растворимость водорода в жидком титане больше, чем в стали, но с понижением температуры она резко падает, водород выделяется из раствора. При затвердевании металла это может вызвать пористость и замедленное разрушение сварных швов после сварки. Все титановые сплавы не склонны к образованию горячих трещин, но склонны к сильному укрупнению зерна в металле шва и околошовной зоны, что ухудшает свойства металла,  [c.199]

Степень наводороживания титана зависит как от концентрации атомного водорода на поверхности металла, определяющейся скоростью катодного процесса восстановления и молизации, так и от растворимости водорода в сплаве. Вследствие более высокой растворимости водорода в р-титане по сравнению с растворимостью в а-титане сильнее наводороживаются (a-fP)-сплавы и, особенно, однофазные р-сплавы.  [c.230]

Таким образом, повышение растворимости газов при перегреве расплава обусловливает возникновение ряда дефектов в слитке. Растворимость кислорода, азота и водорода зависит от состава и, по-видимому, от структуры ближнего порядка жидкой стали. По вопросу о механизме растворимости газов в металлах предложено много различных гипотез. Растворимость газов связывают с электронной концентрацией в сплавах, со скоростью диффузии и степенью взаимодействия атомов газа и металла и с другими факторами. В работе [147] рассматриваются существующие теории растворимости газов в металлах. При повышении температуры, как правило, не только увеличивается растворимость газов в стали, но и усиливается взаимодействие газов с примесями (S, Р, Мп, Si и др.), а также с Fe и легирующими элементами, что способствует образованию круп-н >щ неметаллических включендй в сдитке.  [c.183]

И водород поступает в сплав циркония также только с одной стороны оболочки ТВЭЛа или технологического канала и диффундирует к другой его поверхности, на которой концентрация водорода в первом приближении может быть принята равной нулю. В процессе диффузии через металл атомы водорода взаимодействуют с дислокациями и образуют около них облака Коттрелла. Можно принять, что в облаке Коттрелла находится столько же атомов водорода, сколько атомов металла в ядре дислокации, а именно — 40. В этом случае концентрация водорода в сплавах циркония приблизительно равна 3,2 10 р% мае., где р — плотность дислокаций. Обычно в изделиях из сплавов циркония р 10 см . Отсюда содержание водорода, выделившегося в процессе коррозии, в сплавах циркония близко значению 3-10 % мае. Растворимость водорода в сплавах циркония при комнатной температуре существенно меньше. В связи с этим при остановке реактора в оболочках ТВЭЛов и технологических каналах, изготовленных из сплавов циркония, образуются гидриды циркония. Вследствие локальной пластической деформации плотность дислокаций может возрастать до 10 см" . В этом случае концентрация водорода в сплаве циркония составит 0,03 %, что близко к концентрации водорода, при которой может происходить водородное охрупчивание. Поэтому совершенно необходимо исключать локальную пластическую деформацию изделий из сплавов циркония.  [c.218]


В сплаве А1—AI2O3 (САП) [12] дисперсные окислы получают за счет присутствия окисной пленки на поверхности частичек алюминиевого порошка. При спекании кислород из образовавшихся окислов диффундирует внутрь частицы й дает окисел AI2O3. При последующей экстракции порошковой глассы Образовавшиеся окислы распределяются равномерно по всей матрице. В настоящее время этот метод широко используется для различных металлов и сплавов и, в частности, для тугоплавких металлов [13, 14, 22, 23]. Так, стружку сплава Мо — 0,5Ti [13] размалывают в порошок, который прессуют и спекают в атмосфере водорода. При спекании кислород из образовавшихся частиц окислов диффундирует внутрь и дает окислы титана. Полученный материал затем прессуют. Этот метод получения сплавов с дисперсной упрочняющей фазой применим для металлов с низкой растворимостью кислорода в них.  [c.129]

Зависимость растворимости кислорода и водорода в металлах, применяемых при изготовлении огневых стенок камер сгорания от температуры, показана на рис. 4.22. У ЖРД с наружным охлаждением огневых стенок камер сгорания, выполненных из медных сплавов, давления газов в пристеночном слое достигают 10 Па, а температура колеблется в пределах 1000. .. 2000" С. При подобных условиях процессы проникновения газов в металл лимитируются диффузией атомов газа в металл. Но диффузия является процессом активационным, скорость которого находится в экспоненциальной зависимости от темиерату-  [c.95]

Кроме того, водород и без кислорода способен диффундировать в мжрош-лости металла, создавая в них избыточное давление. Однако, при прочих равных условиях, это давление ниже давления водяного пара, поскольку без кислорода уменьшается растворимость водорода в медных сплавах. Процесс возникновения  [c.97]

Для соединения тугоплавких металлов и их сплавов преимущественно применяют сварку плавлением дуговую в инертных газах (в камерах и со струйной защитой), под бескислородным флюсом (для титана), в вакууме электроннолучевую, лазером. Для некоторЬ1х изделий применяют следующие способы сварки давлением диффузионную в вакууме и защитных газах, взрывом, контактную. По свариваемости и технологии сварки тугоплавкие металлы можно разделить на две группы. К первой группе относятся титан, цирконий, ниобий, ванадий, тантал, ко второй — молибден, вольфрам. Металлы и сплавы первой группы обладают хорошей стойкостью к образованию горячих трещин, но склонны к образованию холодных трещин. Склонность этих металлов к холодным трещинам связана с водородом, который охрупчивает металл в результате гидридного превращения при содержании его выше предельной растворимости. Кроме того, охрупчивание металла происходит также при насыщении кислородом, азотом, углеродом и теплофизическом воздействии сварки, вызывающем перегрев, укрупнение зерна и выпадение хрупких фаз.  [c.500]

Водородная хрупкость а-тнтановых сплавов может проявляться как при больших, так и при малых скоростях деформации. Эта особенность а-тнтановых сплавов связана с характером их взаимодействия с водородом. Во-первых, растворимость водорода в а-сплавах заметно больше, че.м в титане, и, во-вторых, не слишком велика, так что, если гидриды и не наблюдаются в металле при тех средних концентрациях водорода, которые встречаются в практике, они могут появиться из-за сегрегации  [c.379]

Одним из способов освобождения жидкого металла от растворимых и нерастворимых в нем включений кислорода является раскисление — восстановление окислов специальными раскислителями. При плавке цветных металлов и сплавов в качестве раскислителей чаще всего применяются элементы, входящие в состав сплава или допускаемые в виде примесей. Частично остающиеся в жидком металле рас-кислители не должны ухудшать свойства металла. Окислы раскислителей не должны растворяться в металле, они должны легко всплывать в шлак или испаряться. Высоким сродством к кислороду обладает литий. Он образует прочные химические соединения с кислородом, азотом, водородом и серой. Поэтому литий, добавляемый в расплавленную медь, является одновременно и раскислителем, и дегазатором. Хорошие результаты как раскислитель дает магний, однако небольшое количество оставшегося после плавки магния или 40  [c.40]

Влвянве легирующих элементов на растворимость водорода в железе Легирующие элементы в железных сплавал оказывают различное влияние на растворимость водирода в металле, углерод, кремний, алюминий, хром снижают (фиг. 20), а титан и ниобий увеличивают ее (фиг. 21).  [c.73]

При сварке алюминиевы сплавов возможно образование пор, источником которых является водород, хорошо растворяющийся в алюминии при температуре плавления. Повышенной склонностью к пористости обладают при сварке алюминиево-магниевые сплавы, так как магний увеличивает растворимость водорода в алюминии. Для уменьшения пористости используют рациональн)то обработку поверхностей перед сваркой с целью удаления влаги, адсорбированной поверхностью металла и входящей в состав оксидной пленки в виде гидратированных оксидов.  [c.432]

При эмалировании сплава АЛ9 эмалью № 531 без грунта покрытия хуже, чем на АЛ4, меньше прочность сцепления и сильное пузырение эмали. Это, возможно, связано с тем, что при снижении содержания кремния увеличивается к. т. р. сплава, повышается растворимость водорода в жидком металле при неизменном содержании водорода в твердом металле, как это следует из рис. 93.  [c.181]

Влияние других элементов на свойства оловянных Б. О растворимости газов в твердой и жидкой Б. данных недостаточно. Если принять, чт.) Б. в отношении газов будет аналогична меди как ее главной составляющей, то можно будет считать, что водород и окись углерода способны растворяться в жидком металле, и растворимость резко падает в момент перехода из жидкого состояния в твердое. Действительно, многочисленные наблюдения по казали, что плавка Б. в восстановительной атмосфере неизменно ведет к понижению качества отливки вследствие образования раковин и пор. Клаус указывает, что присутствие олова понижает растворимость газов в меди. Кислород, незначительно растворяясь в твердой меди, образует с ней закись меди (Си О). Присутствующее в Б. олово восстанавливает закись меди с образованием оловянного ангидрида 8пОз. Последний отчасти уходит в шлак, отчасти остается в металле в виде отдельных включений серого цвета. Эги включения, образуя пленки по границам зерен, сильно снижают механич. качества ]3., создавая хрупкость. Влияние металлич. примесей на свойства меди и Б. изучалось многими исследователями. Наиболее часто встречающимися примесями в Б. являются цинк, фосфор, свинец. Примеси эти изменяют свойства Б. в известных случаях в лучшую сторону, а потому весьма часто вводятся в сплав как специальные добавки.  [c.547]

При использовании этих рекомендаций следует иметь в виду, что истинное содержание водорода в шве и околошовной зоне титана и ряда его а сплавов может быть ниже, чем в основном металле и присадочной проволоке, так как в процессе нагрева при сварке происходит десорбция водорода в связи с понижением его растворимости при высоких температурах. Эго было показано в работе [25] экспериментально путем неравномерного нагрева образцов из технического титана в машине ИМЕТ-1 до 1400—1500° (рис. 10). При высоком содержании водорода в основном металле в процессе нагрева с высокими скоростями выделение водорода сопровождается также образованием внутренних вздутий и пор вследствие развития высоких изостерических давлений. Эти опыты, в частности, послужили основанием для предположения о том, что водород является основной причиной образования пор при сварке титана и его сплавов. При малом содержании водорода в основном и присадочном металлах источником водорода служит влага, адсорбированная на поверхности свариваемых кромок и проволоки [25]. В дальнейшем это было подтверждено в ряде работ других авторов.  [c.36]


Общие сведения. С развитием новых отраслей техники тугоплавкие металлы и их сплавы благодаря высоким жаропрочности, коррозионной стойкости в ряде агрессивных сред и другим свойствам находят все более широкое применение. К тугоплавким металлам, использующимся для изготовления сварных конструкций, относятся металлы IV, V и VI групп периодической системы Менделеева ниобий, тантал, цирконий, ванадий, титан, молибден, вольфрам и др. Эти металлы и сплавы на их основе обладают рядом общих физико-химических и технологических свойств, основными из которых являются высокие температура плавления, химическая активность в жидком и твердом состоянии при повышенных температурах поотношению к атмосферным газам, чувствительность к термическому воздействию, склонность к охрупчиванию, к интенсивному росту зерна при нагреве выше температуры рекристаллизации. Пластичность сварных соединений тугоплавких металлов, как и самих металлов, в большей мере зависит от содержания примесей внедрения. Растворимость азота, углерода и водорода в тугоплавких металлах показана на рис. 1. Содержание примесей внедрения влияет на технологические свойства тугоплавких металлов и особенно на их свариваемость. Взаимодействие тугоплавких металлов с газами и образование окислов, гидридов и нитридов вызывают резкое охрупчивание металла. Главной задачей металлургии сварки химически активных тугоплавких металлов является обеспечение совершенной защиты металла и минимального содержания в нем вредных примесей. Применение диффузионной сварки в вакууме для соединения тугоплавких металлов и их сплавов является весьма перспективным, так как позволяет использовать наиболее совершенную защиту металла от газов и регулировать термодеформационный цикл сварки в благоприятных для металла пределах.  [c.150]


Смотреть страницы где упоминается термин Растворимость водорода в металлах и сплавах : [c.115]    [c.16]    [c.111]    [c.77]    [c.16]    [c.513]    [c.206]    [c.265]    [c.28]    [c.329]    [c.234]   
Смотреть главы в:

Влияние водорода на химическое и нефтяное оборудование  -> Растворимость водорода в металлах и сплавах



ПОИСК



Водород

Водород —- Растворимость в металла

Металлы и сплавы Металлы

Растворимость

Растворимость водорода

Растворимость металлов

Сплавы металлов



© 2025 Mash-xxl.info Реклама на сайте