Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химические изменения вещества

Наоборот, излучение, возбуждаемое не нагреванием, а какими-либо другими процессами, не будет равновесным. Пусть, например, излучение имеет характер хемилюминесценции, т. е. сопровождает какой-то процесс химического изменения вещества. Поглощение большей или меньшей доли испущенной световой энергии не вернет вещество в его первоначальное состояние. Более того, повышение температуры, вызванное поглощением тепла, обычно ведет лишь к более энергичному протеканию химической реакции. Процесс непрерывного изменения излучающей системы будет продолжаться до тех пор, пока может идти химическая реакция, и, следовательно, система все больше и больше удаляется от первоначального состояния. Равновесие установится только тогда, когда закончится химический процесс, а с ним и хемилюминесценция, и характер установившегося излучения будет определяться температурой нашего тела, т. е. равновесное состояние будет соответствовать опять-таки тепловому излучению.  [c.684]


Если в первых двух типах процессов протекание технологического процесса достаточно полно может характеризоваться состоянием технологического оборудования, то в тех случаях, когда происходят физические или химические изменения вещества, подобной информации явно недостаточно. Это связано прежде всего с тем, что подобные процессы зачастую могут протекать лишь при определенных условиях (температура, давление и т. п.) и, следовательно, для получения информации о качественном состоянии всего объекта  [c.58]

Химические изменения вещества  [c.20]

Металлы относятся к проводникам первого ряда для них характерно прохождение тока, не сопровождающееся химическим изменением материала. В отличие от растворов электролитов, электропроводность металла не связана с переносом вещества и носит название электронной или металлической.  [c.10]

Следует заметить, что идеальная фаза должна иметь определенный и фиксированный в некотором интервале изменения переменных химический состав. Например, идеальность газообразного водорода при нормальных условиях означает, что он состоит из двухатомных молекул, так как молекулярная масса однозначно следует из уравнения состояния (10.7). При низких давлениях и высоких температурах, когда нельзя пренебрегать диссоциацией молекул Нг, водород не является идеальным газом, хотя свойства и атомов Н и молекул Нг в отдельности, при отсутствии химической реакции между ними, должны, очевидно, хорошо описываться уравнениями для идеальных газов. Равновесная смесь химически реагирующих веществ не может, следовательно, быть идеальной, и расчет химических равновесий между составляющими — один из способов учета ее не-идеальности. Это видно также на примере соотношений (16.31) — (16.33), которые позволяют находить активности веществ в растворах по данным о молекулярном составе насыщенного пара, пользуясь уравнениями для идеальных растворов, хотя ассоциированный пар не является идеальной системой.  [c.170]

Интересующий процесс может происходить с изменением как температуры, так и давления. Например, адиабатическое расширение газа, сопровождающееся химическими превращениями веществ.. Энтальпия системы в таком процессе также меняется. Если, однако, расширение можно считать равновесным, то должна сохраняться энтропия системы и ее можно определить по энтропиям исходных веществ, т. е.  [c.173]

Ядерные реакции типа А а - В + Ь, а также и других типов сопровождаются перестройкой атомных ядер. Эта перестройка сопровождается более глубокими изменениями вещества, чем при химических реакциях. Однако некоторые физические величины системы частиц А Н- а в реакции не изменяются, т. е. имеют место законы сохранения.  [c.264]


Известны процессы излучения, сопровождающие химические превращения внутри тела, — так называемая хемилюминесценция. Сюда относится, например, свечение гниющего дерева или свечение фосфора, медленно окисляющегося на воздухе. В этом случае испускание лучистой энергии идет параллельно с изменением химического состава вещества и уменьшением запаса его внутренней энергии.  [c.682]

Рассмотренные случаи фазовых переходов химически чистого вещества относятся к фазовым переходам так называемого первого рода, когда переход из одной фазы в другую осуществляется с выделением (поглощением) теплоты и изменением объема фаз. Однако в ряде случаев эти особенности могут и не проявляться, например, в случае перехода металла из нормального состояния в сверхпроводящее при критической температуре. Такие фазовые превращения носят наименования фазовых переходов второго рода. В этом случае никакого скачка в изменении состояния тела не происходит. Состояние системы изменяется непрерывно, и в точках фазового перехода состояния фаз совпадают. Теория фазовых переходов второго рода выходит за рамки данного учебника и составляет содержание специальных курсов.  [c.96]

Коэффициент теплопроводности является физическим параметром и зависит от химической природы вещества и его физического состояния (плотности, влажности, давления, температуры). Диапазоны изменения Л для различных материалов приведены на рис.2.1.  [c.8]

Действие ядерных излучений на вещество в общих чертах состоит из следующих процессов. Во-первых, налетающие частицы, сталкиваясь с электронами, выбивают их, производя в веществе ионизацию (иногда возбуждение) атомов. Во-вторых, налетающие частицы достаточно высоких энергий при неупругом ядерном столкновении с ядрами могут частично разрушать ядра, например, выбивая из них протоны и нейтроны, ведет к появлению в веществе новых изотопов, в том числе новых элементов. Эти новые изотопы часто оказываются радиоактивными. В результате в веществе возникает наведенная активность. В-третьих, при выбивании электронов во многих веществах, особенно органических, могут разрушаться или, наоборот, возникать различные химические связи, что приводит к изменению химической структуры вещества. В-четвертых, при упругих столкновениях налетающих частиц с ядрами атомы вещества выбиваются из своих положений в кристаллической решетке в другие узлы или в междоузлия. В результате в решетке образуются разного рода дефекты, влияющие на различные физические свойства кристаллов.  [c.456]

Вязкость всех веществ, не претерпевающих при нагреве химических изменений, сильно уменьшается с повышением температуры (рис. 5-7).  [c.79]

Для количественной оценки радиационно-химических изменений в веществе введено понятие выход реакции . Выход можно охарактеризовать числом молекул, образующихся или распадающихся при поглощении веществом 100 эв энергии излучения. Эта величина обозначается буквой G в скобках обычно указывается наименование образовавшегося продукта. Например, величина (Нг) = х означает, что в определенной реакции под действием излучения на каждые 100 эе поглощенной энергии образуется х молекул водорода аналогично величина G —М) указывает число молекул исходного вещества, распавшихся при поглощении 100 эв энергии излучения.  [c.11]

Еще одним способом аккумулирования теплоты является использование различий в физическом состоянии вещества, заключающихся во внешнем воздействии на вещество с целью вызвать его переход из твердой фазы в жидкую или из жидкой в парообразную. При подобном изотермическом превращении состояния вещества либо поглощается, либо выделяется определенное количество теплоты в зависимости от того, в каком направлении оно происходит. Такая теплота называется скрытой теплотой фазового превращения. Некоторые специфические формы изменения состояния вещества, такие как плавление, конденсация, испарение и т. п., также связаны с поглощением или выделением теплоты. Для большинства химически чистых веществ их преобразование не связано со значительным выделением (или поглощением) теплоты..  [c.255]


Поглощенная энергия механических колебаний < > вызывает физико-химические изменения, возникающие в подвергшемся вибрационному воздействию веществе (части тела человека), которые приводят в конце концов к вибрационной болезни.  [c.9]

Необратимый процесс физико-химических изменений исходного вещества под действием ионизирующих излучений называют радиолизом или радиационным разложением.  [c.79]

Смазочное вещество не должно содержать каких-либо минеральных кислот, способствующих разъеданию, разложению и другим химическим изменениям металла. Смазка должна легко наноситься на заготовку и удаляться с отштампованных деталей.  [c.100]

Термическая диссоциация. Обратимая реакция химического разложения вещества, обусловленная изменением его температуры или давления.  [c.370]

Первое обстоятельство связано с изменением величины комплексного показателя преломления частиц вследствие различий в их электропроводности и диэлектрической проницаемости. Это изменение находится в непосредственной зависимости от химического состава вещества, в частности от содержания углерода и кислорода в топливе.  [c.213]

Исходя из задач технической термодинамики, нет необходимости рассматривать вопрос о том, что представляет собой внутренняя энергия вещества с точки зрения микроструктуры вещества. Напомним только, что по современным физическим воззрениям внутреннюю энергию вещества можно представить себе как сумму кинетических и потенциальных энергий молекул (атомов, ионов, электронов) этого вещества. Часть внутренней энергии вещества изменяется только в результате химических превращений и должна учитываться только в процессах, сопровождаемых химическими изменениями.  [c.32]

Кроме того, нужно знать константы интегрирования и уравнений (15-112) и (15-113). В тех случаях, когда речь идет о веществе неизменного химического состава, для определения разности энтропий, связанной с изменением параметров вещества, нет необходимости знать константу интегрирования, так как она при вычислении исключается. Но при химических процессах константы интегрирования д, и 2,о по своему значению различны, так как относятся к различным с точки зрения химического состава веществам.  [c.500]

Новая техника выдвинула трудную задачу построения теории теплообмена в сверхзвуковых потоках с учетом химических и фазовых превращений вещества. В ряде работ из этой области приводятся расчетные соотношения, полученные на основе упрощений и грубых приближений. Большинство исследователей при решении нестационарных задач по теплообмену использует замкнутую систему уравнений аэродинамики и уравнений кинетики химических превращений вещества. Однако не всегда эта замкнутая система уравнений является корректной. Например, часто приравнивают конвективный перенос вещества к скорости химической реакции, менаду тем как первое понятие относится к классу потоков и, следовательно, связано, с поверхностями одинакового потенциала -переноса, а второе характеризует изменение в объеме и по существу всегда скалярная величина.  [c.16]

Из всех шихтовых материалов кокс подвергается наименьшим физическим и химическим изменениям при опускании от колошника до горна. Загруженные в печь куски кокса в первую очередь теряют влагу. Этот процесс протекает быстро — как только кокс нагревается до 110°С. После того как кокс нагреется до 300—400 °С, из него выделяются остатки летучих веществ органического происхождения СН ,  [c.67]

Уже вскоре после открытия радиоактивности (Беккерель, 1886 г.) было установлено, что интенсивность излучения зависит от концентрации радиоактивного вещества (урана), но не меняется при изменении температуры и давления, при наложении электрических и магнитных полей и при изменениях химического состава вещества.  [c.451]

Химические изменения на начальной стадии. Старение смолы вызывает увеличение продолжительности отверждения на 25—50 %, что свидетельствует о том, что введенный в смолу ингибитор перешел в процессе хранения в промежуточное более активно ингибирующее вещество по данным поставщика, период времени, в течение которого может происходить это изменение продолжительности отверждения, может составить от 24 ч до 4 мес.  [c.55]

ПО показателям преломления электропроводных и неэлектропроводных материалов обширные табличные данные приводятся в справочнике [45] и таблицах [46]. Почти все опубликованные экспериментальные данные по показателям преломления относятся к воздуху, поскольку для большинства оптических систем окружающей средой служит воздух. Тщательное изучение экспериментальных данных для металлов и частично проводящих материалов показывает, что в некоторых случаях имеется несогласие между значениями показателей преломления, рекомендуемыми для одного и того же вещества различными исследователями. Эти различия обусловлены сильной зависимостью результатов оптических измерений от чистоты образца, метода изготовления и экспериментальной установки. Оптические. постоянные изменяются с изменением химического состава вещества и длины волны падающего излучения.  [c.101]

Таким образом, термодинамический эффект, вызванный изменениями количеств веществ в системе, можно вырааить тремя способами. Вонпервых, его можно представить как сумму эффектов от каждого из компонентов системы. Независимыми переменными в этом случае служат количества (или массы) компонентов, и вклад каждого из них о внутреннюю энергию системы записывается в виде ifdrtf. Этот способ описания пригоден для процессов в открытых системах. Вопрос о химическом равновесии внутри системы при нем остается невыясненным. Так функции и(S, V, п) или U(T, V, п) могут относиться как к химически равновесной системе, так и к системе, в которой нет химических превращений веществ. Обе эти возможности должны указываться заранее при формулировке задачи. Последнее замечание относится и к описанию процессов в закрытых системах, у которых все внешние переменные п фиксированы и поэтому обычно не включаются в набор аргументов термодинамических функций. Например, уравнение состояния (2.1) в виде Р = Р(Т, V) справедливо как для химически равновесной смеси веществ, так и для гомогенной системы без химических превращений. Общие выражения (2.2) —(2.7) для частных производных одинаковы в обоих случаях, о численные значения термических коэффициентов av, Pv и других свойств при наличии химических реакций и без них могут существенно различаться. Наглядный пример этого — уравнения (5.30), (5.31).  [c.69]


Смолы - применяемое в практике, хотя и не вполне строгое научное название обширной группы материалов, характериз>тощихся как некоторым сходством химической природы (это сложные смеси органических веществ, главным образом высокомолекулярных), так и некоторыми общими для них физическиш свойствами. При достаточно низких температурах смолы - это аморфные, стеклообразные массы, более или менее хрупкие. При нагреве смолы (если только они ранее не претерпевают химических изменений) размягчаются, становясь пластичными, а затем жидкими. Применяемые в электроизоляционной технике смолы большей частью ж растворимы в воде и мало гигроскопичны, но растворимы в близких по химической природе органических растворителях. Обычно смолы обладают клейкостью и при переходе из жидкого состояния в твердое (при охлаждении расплава или при испарении летучего растворителя из раствора) прочно прилипают к соприкасающимся с ними твердым телам.  [c.131]

Из прочих факторов, затрудняющих расшифровку фазового состава, следует отметить способность некоторых соединений легко образовывать твердые растворы. При этом температуры соответствующих тепловых эффектов смещаются, а иногда вообще исчезают. Наконец, химическое взаимодействие веществ, находящихся в системе, приводит к значительному изменению характера термограмм, проявлению новых эндо- и экзоэффектов и исчезновению эффектов, присущих отдельным фазам. В этих случаях само взаимодействие может оказаться интересным явлением, позволяющим делать определенные выводы. Поэтому иногда целесообразно намеренно вводить некоторые вещества, чтобы заставить их реагировать с искомой фазой. Следует отметить, что пленки и отложения обычно состоят из веществ, находящихся между собой в устойчивом равновесии, поэтому на их термограммах, часто даже очень сложных, экзотермических эффектов обычно не наблюдается.  [c.217]

Поскольку герметики и адгезивы на основе невулканизуемых каучукоподобных полимеров не подвергаются химическим изменениям в процессе переработки, они не взаимодействуют с силанами на поверхности раздела с минеральными наполнителями. Согласно многочисленным данным, силановые аппреты не способствуют образованию водостойких связей между такими адгезивами и поверхностью минеральных веществ. Водостойкие связи не всегда образуются даже в результате химической прививки силановых аппретов к термопластичным каучукам.  [c.219]

Эти модификаторы ржавчины называют еще модифи- цирующими растворами, поскольку они представляют со-<бой водные растворы фосфорной кислоты и ряда других компонентов. В отличие от вышеописанных грунтовок — модификаторов ржавчины среди компонентов модифицирующих растворов нет пленкообразующих веществ, поэтому на поверхности металла при их использовании не образуется пленок грунта, а происходит лишь химическое изменение ржавчины. Вследствие этого поверхность металла, обработанную модификаторами, необходимо перед окрашиванием грунтовать.  [c.30]

В свете развитой выше теории нет необходимости искать причину механохимического эффекта в увеличении числа активных мест на поверхности твердого тела (как это делают Бокрис и Хор [49, 58]), так как главное — их качество, т. е. локальное увеличение стандартного химического потенциала вещества. Термодинамическая активность (или концентрация активных атомов) металла при этом может оставаться без изменений или даже не-сколькр уменьшаться при достаточно высокой степени деформации механохимичёскбе поведение металла определяется локальными процессами в ограниченном числе мест (эффект нелинейной концентрации механохимической активности), как это подтверждается импедансными измерениями (гл.IV).  [c.71]

Предполагается, что на поверхности металла происходит адсорбция как продуктов разложения тиомочевины или ее производных (Н5- ионы, органические катионы), так и молекул, не подвергнутых химическим изменениям. Молекулы хемосорбируются на поверхности металла с образованием электронной пары между атомами серы и атомами металла. Вероятно, в ряде случаев адсорбция тиомочевины и ее производных может быть обусловлена взаимодействием металла с группами NN2, поскольку у атома азота, как и у серы, имеется свободная электронная пара. С другой стороны отмечается [109], что продукты распада тиомочевины или ее производных, которые являются более низкомолекулярными веществами, чем тиомочевина или ее производственные, не обладают высокой эффективностью и не могут полностью обеспечить наблюдаемый защитный эффект.  [c.74]

Необратимый процесс физико-химических изменений исходного вещества иод действием нагревания называют пиролизом или термическим разложением. Пиролиз зависит не только от температуры и времени нагревания, но и ряда других факторов — давления и природы окружающей среды, наличия шримесей в исходном веществе и др. Нз иример, разложение в инертной среде или вакууме существенно отличается от разложения в атмосфере воздуха. Следует отметить, что в строгом смысле  [c.29]

Минеральные масла независимо от сырья, из которого они приготовлены, способа очистки, имеющихся в них присадок, а также мер, предусмотренных в конструкции смазочной системы с целью предотвращения попадания извне загрязняющих веществ, подвергаются во время работы физическим и химическим изменениям. Эти изменения вызываются прежде всего их окислением. Порча или старение масла является сложным процессом, который до настоящего времени еще полностью не изучен. При различных стадиях окисления в масле могут быть найдены органические кислоты, летучие карбониловые соединения, а также способные  [c.31]

Теплообмен в области сверхкритических давлений имеет ряд отличительных особенностей, которые в основном вызваны значительным немонотонным изменением физических свойств при температурах, близких к критической 7кр или псевдокритическим Тт. Химически реагирующие вещества имеют более сложные зависимости свойств от Г и Р в связи с существенным влиянием химических реакций, особенно на теплоемкость и теплопроводность. Химически инертные вещества в области псевдокритической температуры имеют максимальную вязкость и теплоемкость с последующим монотонным снижением. Четырехокиси азота свойственны своеобразные графики pe=f(P, Т) и %e = f(P, Т). В области температур, соответствующих протеканию первой стадии реакции диссоциации, наблюдается первый максимум значений Сре и Яе, второй- максимум функции, менее выраженный для Сре, соответствует диапазону температур реакции 2N02 2N0+02.  [c.72]

Радиационное нарушение стабильности рабочего тела или теплоносителя вызывается химическими превращениями под действием источника излучения и воздействием образующихся активных частиц (ионов и радикалов). Оба процесса приводят к необратимым изменениям вещества. Мерой радиационной стойкости принято считать радиационнохимический выход G, равный числу молекул вещества, образующихся или распадающихся при поглощении дозы энергии 100 эВ.  [c.61]

Образование пленок масляных лаков и эмалей, а также лаков и эмалей на синтетической основе происходит в результате химических изменений пленкообразующих веществ. Пленки этих материалов необратимы, т. е. при действии растворителя они не сохраняют свойств пленкооб-разования.  [c.465]

Физические механизмы, обусловливающие нелинейность объемных коэффициентов ао и в случае водного аэрозоля связаны с регулярным поверхностным испарением или фрагментацией частиц в зависимости от режима их радиационного нагрева. Для аэрозоля с твердой фракцией частиц характер их разрушения и изменения оптических сечений весьма многообразен и определяется как энергетикой излучения, так и физико-химическими свойствами вещества частиц. К отмеченным механизмам нелинейности относятся инициирование термо- и массоореолов при импульсном нагреве, испарении, термической диссоциации и горении частиц возникновение очагов ионизации и оптического пробоя. Результаты исследований указанных эффектов детально рассмотрены в главах 4 и 5. На основании этих результатов выполнены теоретические расчеты [26, 49] параметров нелинейных искажений эхо-сигналов.  [c.190]


В результате взаимодействия нейтронов с ядрами появляется вторичное излучение в виде у-квантов, протонов отдачи (особенно При упругом рассеянии на ядрах водорода), а-ча-стиц (ядер гелия) и продуктов радиоактивности образующихся изотопов (из которых наиболее существенны, с точки зрения воздействия на орбитальные электроны, изотопы с небольшим периодом полураспада). Эти вторичные излучения взаимодействуют с электронами атомов (молекул) вещества и вызывают собственно химические изменения, наблюдаемые в процессе и после облучения полимерных электроизоляционных материалов. При испытаниях образцов материалов толщина их не превышает обычно нескольких миллиметров, поэтому для взаимодействия ИИ по всей глубине-образца обычно бывает достаточно энергии электронов до 20 МэВ и протонов до W0 МэВ. Применение заряженных частиц с энергией менее 10 МэВ не вызывает наведения радиоактивности и дает возможность работать с образцами без какого-либо ограничения. Проникающая способность у-квантов и нейтронов (не имеющих зарядов) наибольшая, поэтому часто при испытаниях применяются источники у-квантоБ.  [c.314]


Смотреть страницы где упоминается термин Химические изменения вещества : [c.146]    [c.99]    [c.134]    [c.114]    [c.211]    [c.397]    [c.273]    [c.382]   
Смотреть главы в:

Сжатие газов в топках котлов и печей и обслуживание газового хозяйства предприятий 1960  -> Химические изменения вещества



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте