Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система упорядоченная

Поскольку в живых системах упорядоченность обладает способностью поддерживать себя сама и производить упорядоченные явления, здесь должны действовать принципиально новые законы. Новые законы естествознания, а не непостижимой жизненной силы , духа и т. п. Поисками этих закономерностей и заняты сейчас биологи, физики, химики и даже... техники, работающие в области биофизики, биохимии, биомеханики... Вероятно, именно на этом направлении человечество ждут теперь самые крупные открытия.  [c.178]


Ближний порядок является характеристикой топологического (расположение атомов в пространстве независимо от их вида) и композиционного (распределение атомов разного вида в многокомпонентных системах) упорядочений. Упорядочение может проявляться как стремление атомов одного сорта окружить себя преимущественно атомами иного вида отрицательный ближний порядок) или атомами того же вида положительный ближний порядок).  [c.21]

Стандартный АК базируется на использовании излучателей и приемников с круговой диаграммой направленности в плоскости, перпендикулярной оси скважины. На рис. 3.1 показан схематически разрез скважины в этой плоскости с находящимся в центре скважины источником (излучателем). Скважина пересекает поперечно-изотропную среду с системой упорядоченных трещин, дающих на плоскости разреза систему параллельных линий (следов трещин). Источник создает в скважине волну давления Р, которая на стенке скважины преобразуется в преломленную продольную волну РР и в преломленную поперечную волну Р8.  [c.57]

Часто используется также альтернативное представление векторов (и тензоров) в виде упорядоченных систем чисел, называемых компонентами. По сравнению с геометрическим представление посредством компонент имеет то неудобство, что оказывается зависящим от векторного базиса и, следовательно, зачастую от системы координат, т. е. при изменении векторного базиса данный вектор (стрелка в пространстве) будет менять свои компоненты.  [c.16]

Упорядоченная система чисел a , а , однозначно связана с вектором а и составляет систему компонент вектора а относительно выбранного базиса.  [c.16]

Представляется практически важным связать пространство точек с координатной системой. Это достигается установлением соответствия между упорядоченными тройками чисел, называемых координатами, и точками пространства. Общеизвестным примером является декартова система координат. Для установленного соответствия молчаливо предполагается выполнение условий гладкости.  [c.16]

Упорядоченность поворотов системы трех некомпланарных векторов определяется следующим образом. Пусть заданная тройка векторов исходит пз одной точки. Рассмотрим плоскость а, образуемую первым и вторым векторами. Если для наблюдателя, смотрящего с конца третьего вектора, поворот в плоскости а на малый угол по направлению от первого вектора ко второму осуществляется по часовой стрелке, то система векторов называется левой если же указанный поворот осуществляется против часовой стрелки, то система векторов называется правой.  [c.28]


Важно проводить строгое различие между системами отсчета и системами координат. В разд. 1-2 мы ввели понятие системы координат как некоторого соотношения, ставящего в соответствие точкам пространства упорядоченные тройки чисел. Ясно, что это соотношение можно определить бесконечным числом способов в одном и том же пространстве, т. е. в одной и той же системе отсчета. Если в одной и той же системе отсчета изменить систему координат, то векторы и тензоры не изменятся, а изменятся лишь их компоненты.  [c.36]

Заметим, что принцип объективности поведения материала не связывается с требованием его изотропии анизотропные материалы также должны подчиняться этому принципу. Вообще говоря, принцип объективности поведения материала подразумевает требование изотропии пространства изменение наблюдателя (т. е. системы отсчета) не должно сказываться на поведении материала. Заметим также, что принцип объективности поведения материала является более сильным требованием, чем нейтральность к поворотам, поскольку нейтральность к выбору системы отсчета требуется также при неправильных (т. е. не сохраняющих левую или правую упорядоченность) поворотах [2].  [c.59]

С позиций кинетической теории газов энтропию можно определить как м< ру неупорядоченности системы. Когда от системы при постоянном давлении отводится теплота, энтропия уменьшается, а упорядоченность в системе повышается. Это можно наглядно  [c.27]

Необходимость совершенствования, упорядочения всей конструкторской документации становилась все более очевидной. В 1962-1964 гг. была сделана попытка создать систему конструкторской документации для группы отраслей промышленности так называемую систему К Д. Однако такая система уже не могла удовлетворить растущие требования производства. Жизнь настоятельно требовала создания стандартной Единой системы конструкторской документации для всех отраслей народного хозяйства.  [c.13]

Рис. S5. Кристаллические решетки упорядоченных твердых растворов в системе Си—Аи Рис. S5. <a href="/info/12569">Кристаллические решетки</a> <a href="/info/188598">упорядоченных твердых растворов</a> в системе Си—Аи
На границе раздела металл — электролит создаются условия для перехода атома металла в электролит, так как в этом случае ион металла получает более устойчивую электронную конфигурацию и, кроме того, сильно возрастает энтропия при образовании неупорядоченной системы (раствор) вместо упорядоченной (кристалл). Это создает некоторый скачок потенциала на границе металл — электролит  [c.292]

Однако вывод о постоянстве So относится лишь к полностью равновесным при Т = 0 системам, что значительно ограничивает область его практического применения. При понижении температуры релаксация неравновесных состояний затрудняется, и обычно внутреннее равновесие в веществе не успевает установиться за время наблюдения. В особенности сказанное относится к процессам, требующим диффузионной подвижности составляющих в кристаллической решетке химического соедине-иия. Такие процессы упорядочения при низких температурах, как правило, не завершаются, и в веществе замораживается некоторая неизвестная остаточная энтропия. Поэтому калориметрическое определение энтропий ограничивается обычно простыми веществами.  [c.57]

Номер применяемой системы совпадает с номером первого отличного от нуля коэффициента в упорядоченном наборе ( о, 9ь 92,9з)-  [c.98]

В синергетике рассматривают неравновесные фазовые переходы, которые связывают с потерей устойчивости менее организованного (или неупорядоченного) состояния с переходам в более упорядоченное состояние, т.е. с критическим состоянием системы в точках бифуркаций. Понятие бифуркаций -это математический образ "перехода количественных изменений в качественные" [21].  [c.36]


Диссипация энергии есть процесс перехода части энергии упорядоченного процесса в энергию неупорядоченного процесса, а в конечном итоге - в теплоту. Переход диссипативной системы в упорядоченное состояние связан с неустойчивостью предшествующего, неупорядоченного, состояния, когда параметры системы превышают некоторые критические значения. Первоначально устойчивая диссипативная структура в процессе эволюции системы, достигая порога неустойчивости, начинает осциллировать, а возникающие в ней флуктуации приводят к самоорганизации новой, более устойчивой на данном иерархическом уровне диссипативной структуры.  [c.61]

Если движение нуклонов в ядре имеет хаотический характер и можно воспользоваться статистическим методом рассмотрения, то ядро можно уподобить разреженному ферми-газу, находящемуся в замкнутом объеме. В этом случае мы будем иметь газовую модель ядра. Наоборот, если нуклоны ядра совершают упорядоченные дни жения, то ядро уподобляется планетной системе или атомной си стеме с почти независимым орбитальным движением электронов По определенному закону нуклоны ядра группируются в оболочки В этом случае мы будем иметь дело с моделью ядерных оболочек  [c.178]

Представим себе небольшую организацию, занимающуюся сбытом телевизоров. Пока заказов бьшо мало, организация снимала пару комнат, состояла из трех человек. Но вот поток заказов начал возрастать. Вначале организация каким-то образом выкручивалась, затем просто перестала справляться с потоком. Пришлось строить отдельное здание, нанимать новых людей, организовывать внутреннюю структуру организации более сложным образом. Здесь интенсивность потока заказов явилась аналогом потока энергии. Превышение критического значения этого потока привело к реорганизации системы и возникновению новой диссипативной структуры, более упорядоченной, чем предыдущая.  [c.103]

В ряде случаев система, находящаяся в неравновесном состоянии, получает способность к спонтанному повышению собственной степени упорядоченности и созданию правильных форм. Это явление называют самоорганизацией систем.  [c.41]

М. Фейгенбаум отметил общую черту различных процессов по мере изменения внешнего параметра поведение системы меняется от простого к хаотическому, при этом поведение системы упорядоченно и периодично. Упорядоченность заключается в том, что в каждый период времени Г поведение системы самовоспроизводится. Вне этого диапазона процесс перестает воспроизводится через Т (например, Т секунд). Удвоение периода отвечает 2-Т, следующий этап удвоения периода 4-Т. Процесс удвоения продолжается до тех пор, пока поведение системы перестает быть периодическим. Важным в решении Фейгенбаума явилось установление ранее неизвестной закономерности перехода системы от простого, периодического, к сложному, непериодическому, движению, связанной с тем, что в пределе хаотического непериодического движения имеется универсальное решение, общее для всех систем, испыты-  [c.42]

Число положительных корней этого уравнения равно числу степеней свободы п. Согласно уравнению (21) эти корни представляют собой угловые частоты свободных колебаний линейной системы, называемьге собственными частотами системы. Упорядоченную совокупность собственных частот  [c.59]

В общем виде диаграмма в области существования ст-фазы при температурах <700 С изучена в работах [4—6]. Установлено, что ст-фаза может распадаться по эвтектоидной реакции по данным работ [4, 5], температура этого превращения 520° С, по [6] -<500° С. В работах [4, 5] указано также, что области (Fe) + ст и ст-f (Сг) шире, чем указано М. Хансеном и К-. Андерко (см. т. I [10]). Пейтроноструктурным анализом установлено отсутствие в системе упорядоченного твердого раствора [5 ]. В работе [6 ] подтверждена граница области ст-фазы, указанная М. Хансеном и К. Андерко (см. т. I [45]), однако область гомогенности оказалось несколько шире. В отличие от данных работ [4—6], в работе [7 ] сг-фазу наблюдали в фольгах при температуре 300° С после конденсации из пара.  [c.347]

Vtti = Vki—H n (v i, V2i. .. Vhi. .. Vni) — элементы вектора V( H=hlakk, /a(V)=0—k-e уравнение упорядоченной системы (5.1) Ukk—k-a диагональный элемент матрицы Якоби.  [c.228]

V имеет решетку К8 и образует с Ре системы, весьма сходные с системами Ре—Сг уобласть выклинивается примерно при 2% Уа,.. Для твердых растворов с равным атомным содержанием Ре и V возможен процесс упорядочения или образования неустойчивого соединения РеУ (г-фаза). Этот процесс изображается на диаграмме пунктирными кривыми, ограничивающими область существования г-фазы и соседние двухфазные области а+е (рис. 11.5).  [c.158]

Это представление о хаотичности микроскопического движения не порывает полностью с картиной упорядоченной смены микросостояний, следующей из законов механики. Предполагается, что в течение небольших интервалов времени микроскопическое движение происходит <так, как нужноь, т.е. вполне упорядоченно. Но за относительно большое время, в течение которого происходит смена огромного множества микросостояний, система 4за( вает , где ей в точности нужно быть, и может оказаться в любом возможном микросостоянии. Правда, это микроскопически большое время с макроскопической точки зрения обычно оказывается очень малым.  [c.14]

Один из создателей неравновесной термодинамики Денбиг [14] показал на примере кристаллического твердого тела, что энтропию не следует связывать с мерой беспорядка в системе, как это часто делают. Он отметил, что хотя частицы, составляющие кристалл, расположены упорядоченно (если они занимают положения, близкие к точкам пересечения i-еометрической решетки), но не ясно насколько это расположение упорядочено, т.к. теория упорядоченности, которая позволила бы определить степень упорядоченности кристалла, отсутствует.  [c.9]


Ю.Л. Климонтович [ 18] доказал S - теорему и показал, что принцип минимума производства энтропии справедлив и в нелинейной области. Теорема позволяет оценить относительную степень упорядоченности неравновесного состояния системы и предсказать направление, в котором под влиянием внешнего воздействия изменяется термодинамический процесс, протекающий в открытой системе. В соответствии с S - теоремой принцип минимума производства энтропии утверждает, что при критических фазовых переходах через пороговые значения управляющих параметров происходит скачкообразное уменьшение энтропии (оно нормировано на постоянное значение средней кинетической энергии).  [c.28]

В настоящее время синергетика объединила физику диссипативных систем с биологией, что позволило открыть сз гь 6nojmrH4e Koro упорядочения. Но вернемся к кристаллу. Деформированный кристалл является диссипативной системой и поэтому становиться живым в том смысле, что при подводе к нему энергии он остается целостным (живым), пока способен освобождать себя от всей той энтропии, которую он вынуждерг производить в процессе диссипации энергии. Объединение подходов синергетики с материаловедением должно позволить вскрыть суть физического упорядочения в кристаллах при их деформировании, создать принципиально новые технологии получения конструкционных материалов с заранее заданными свойствами и новую теорию их механических свойств [20].  [c.31]

Предспавление о структуре является ключевой в математике, физике, химии, биологии и других науках. Общему понятию структуры удовлетворяет определение Крсбера "Каждая система состоит из элементов, упорядоченных определенным образом и связанных определенными отношениями. Под структурой сисгемы мы понимаем способ организации элементов и характер связи между ними. При этом не существенно, какова природа элементов. Говоря о структуре системы, мы не обращаем внимания на то, какие элементы составляют систему, а рассматриваем лип1ь как совокупность отношений, которая задает связь между элементами системы" [28]. В зависимости от типа объекта, его структура описывается с использованием различных элементов и характеристик (рисунок 1.12). В математике понятие структуры неотделимо от понятий "множество", "элемент", "отношение", "операция" и т.д. Природа элементов не играет существенной роли, их же отношения определяет характер данной структуры (алгебраические, топологические, метрические структуры и  [c.45]

Г. Николис и И. Пригожин понятие о диссипативных структурах сформулировали следующим образом [5] "...как удаленность от равновесия, так и нелинейность могут служить причиной возникновения упорядоченности в системе. Между упорядоченностью, устойчивостью и диссипацией возникает в высшей степени нетривиальная связь. Чтобы четче выяснить эту связь, мы будем называть упорядоченные конфигурации, появляющееся вне области термодинамической ветви, диссипативными структурами. Такие структуры могут существовать вдали от равновесия лишь за счет достаточно большого потока вещества. Диссипативные структуры являют собой поразительный пример, демонстрирующий способность неравновесности служить источником упорядоченности .  [c.60]

Динамические структуры могут возникать в различных средах. Из гидродинамики хорошо известно, что при определенной скорости движения жидкости ламинарное течение сменяется турбулентным. До недавнего времени этот переход отождествляли с переходом к хаосу. В действительности же обнаружено, что в точке перехода путем самоорганизации диссипативных сфуктур происходит упорядочение, при котором часть энергии системы переходит в макроскопически организованное вихревое движение. Переход от ламинарного течения к турбулентности является примером реализации гидродинамической  [c.62]

М. Фейгенбаум [25 J установил общую закономерность различных процессов по мере изменения внешнего параметра поведение системы меняется о т простого к хаотическому. Однако, имеется определенный диапазон значений внешнего параметра, в котором поведение системы упорядочено и периодично. Упорядоченность заключается в том, что в каждый период времени Т поведение системы самовоспроизводится. Вне этого диапазона процесс перестает воспроизводиться, т.е. удвоение периода (Т, 2Т, 4Т...) продолжается до тех пор, пока число удвоений Т не достигнет предельного значения. Это условие выражено соотношением  [c.71]

Связь нелинейных колебаний с самоорганизующимися процессами объясняется тем, что самоорганизующимися считаются любые автоколебательные процессы, обусловленные образованием устойчивых незатухающих колебаний независимо от начальных условий. В линейной области колебания всегда носят хаотический характер, а в нелинейной возможны автоколебания (упорядоченные колебания). Автоколебания отвечают условию, при котором отклик системы на внешнее воздействие не пропорционален воздействующему усилию. Эта ситуация математически описываегся одними и теми же нелинейными уравнениями независимо от среды и условий, при которых возникают автоколебания [ 13].  [c.253]

Таким образом, при свободном движении наш автомобиль рассеивает упорядоченную кинетическую энергию своего движения и превращает ее в хаотическое тепловое движение молекул. Большинство существующих в природе механических систем вед т себя так же. Если говорить обобщенно, полная механическая энергия (потенциальная -в кинетическая) в них убывает, переходя в другие формы энергии, которые в конечном итоге переходят в тепловую. Такие системы принято назвать диссипативными системами (от англ, dissipate - рассеивать). Соответственно, сам процесс рассеяния энергии называют диссипацией.  [c.101]

В гидродинамике увеличение скорости течения жидкости приводит к смене ламинарного режима течения турбулентным. До недавнего времени это отождествлялось с переходом от порядка к хаосу. В действительности же обнаружено, что в точке перехода происходит упорядочение, при котором часть энергии системы переходит в макроскопически упорядоченное вихревое движение. Завихрения в турбулентном движении являются, таким образом, диссипативными структуфами  [c.102]

Диссипативные структуры, как правило, высокоупорядочены. Они отличаются от равновесных структур тем, что для своего существования они требуют постоянного притока энергии извне. Очевидно, что диссипативные структуры могут формироваться лишь в диссипативных системах, находящихся в критических условиях. Переход диссипативной системы в упорядоченное состояние связан с неустойчивостью предыдущего, неупорадоченно-го. При этом определенный параметр системы превышает критическое значение. С переходом в новое структурное состояние система приобретает новый способ функционирования, обеспечивающий ее устойчивость в новом состоянии.  [c.103]

Самоорганизация - необратимый процесс, который путем кооперативного воздействия дискретных систем ведет к образоваЦйю комплексных (часто упорядоченных) структур в этих системах. Самоорганизация - это сверхкритическое явление.  [c.153]

Но где-то на уровне подсознания мы знаем, что увеличение энергии должно приводать к возрастанию хаоса. Таким образом, введением понятия "самоорганизация" ученые попытались объяснить, каким образом достижение высокой степени хаоса п системе самопроизвольно трансформирз ется в порядок. Для на> чного обоснования этого экспериментального факта бельгийским ученым Ильей Пригожиным была выведена теорема о минимуме производства энтропии в системах, находящихся в критическом состоянии [10]. Численное описание подобного рода упорядоченных "самоорганизовавшихся" структур производится, как правило, при помощи аппарата фрактальной геометрии, который оперирует с дробными мерностями D. Вообще, при помощи категории "мерность пространства" описывается большое число критических явлений.  [c.41]


Начало процесса посткристаллизации характеризуется достижением кршического градиента температуры между внутренней частью фрактальных кластеров, составляющих твердое тело, и температурой окружающей среды, охлаждающей систему При этом внутренняя часть элементов, составляющих фрактальную структуру твердого сплава на каждом масштабном уровне претерпевает акт рекристаллизационного упорядочения-уплотнения структуры с образованием трехмерно-упорядоченной объемной части для каждого составляющего звена и масштаба конденсированной иерархической системы. Одновременно происходит "вытеснение" зоны с фрактальной пористой разреженной структурой из внутренней части структурных элементов на их периферийную область (рис. 3.15). Это объясняет обнаруженный многими исследователями пористый фрактальный характер внутренних межзеренных границ в сплавах при комнатной температуре. В дальнейшем мы узнаем, какими функциональными особенностями обладают граничные зоны структурных элементов во взаимосвязи с их струетлфой.  [c.142]


Смотреть страницы где упоминается термин Система упорядоченная : [c.469]    [c.51]    [c.191]    [c.176]    [c.181]    [c.31]    [c.60]    [c.61]    [c.126]    [c.267]    [c.96]   
Основы гидромеханики неньютоновских жидкостей (1978) -- [ c.16 ]



ПОИСК



Гиббса-Дюгема в тройных системах упорядоченных структур

Система адиабатная упорядоченная

Система идеалов адекватно упорядоченная



© 2025 Mash-xxl.info Реклама на сайте