Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия устойчивости пассивного состояния

Условия устойчивости пассивного состояния  [c.60]

Условия устойчивости пассивного состояния коррозионных систем..........................43  [c.6]

УСЛОВИЯ УСТОЙЧИВОСТИ ПАССИВНОГО СОСТОЯНИЯ КОРРОЗИОННЫХ СИСТЕМ  [c.43]

Поддержание устойчивости пассивного состояния в подобном динамическом равновесии будет требовать непрерьшного протекания или внешнего анодного тока (при анодной пассивности) или некоторого тока, возникающего за счет процесса саморастворения при пассивировании без внешней поляризации. Этот анодный ток будет определять скорость электрохимического возобновления пассивной пленки, равную в условиях устойчивости пассивного состояния скорости процесса химического растворения пассивной пленки на внешней поверхности электрода под действием среды.  [c.311]


Коррозионная стойкость металла в пассивном состоянии зависит от совершенства образующейся защитной пленки, количества и размеров ее пор, а устойчивость пассивного состояния определяется устойчивостью защитной пленки в данных условиях.  [c.307]

Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

Никель — хром — железо. Богатые никелем сплавы железа, содержащие 30—45 % Ni и 20—30 % Сг, пассивны в гораздо большей степени, чем никель и проявляют очень высокую стойкость в морских атмосферах. При указанных концентрациях никеля и хрома обеспечивается наибольшая устойчивость пассивного состояния сплавов к изменению внешних условий. В морских атмосферах, содержащих промышленные загрязнения (соединения серы), рассматриваемые сплавы могут тускнеть, однако степень коррозионного разрушения при этом незначительна.  [c.78]

При стационарном режиме работы установки величина тока поляризации, требуемого для поддержания устойчивого пассивного состояния, постоянно меняется вследствие изменения эксплуатационных параметров коррозионной среды (температуры, химического состава, условий перемешивания, скорости движения раствора и др.). Поддерживать потенциал металлоконструкции в заданных границах можно путем постоянной или периодической поляризации. В случае периодической поляризации включение и выключение тока производят либо при достижении определенного значения потенциала, либо при его отклонении на определенную величину. В обоих случаях параметры анодной защиты определяют опытным способом в лабораторных условиях.  [c.295]


Известно, что титан при низких концентрациях соляной кислоты (до 6%) и комнатной температуре находится в устойчивом пассивном состоянии. При анодной защите титана можно использовать более концентрированную кислоту и высокую температуру. Так, в 10—15%-ной соляной кислоте анодная защита эффективна при 100°С, в 20—30%-ной соляной кислоте — при 50—60°С, а в концентрированной соляной кислоте (37 %-ной) — при 60°С. В этих условиях скорость коррозии титана колеблется в интервале 0,02—0,5 г/(м2-сут), что соответствует максимальной потере толщины слоя титана приблизительно 0,06 мм/год. Анодная защита сосудов из титана желательна тогда, когда они полностью заполнены соляной кислотой, в противном случае выще ватерлинии идет коррозия. Правда, для защиты титана в газовой фазе предложено использовать  [c.64]

Для смещения потенциала защищаемого металла (анода) в пассивную область можно использовать катодный протектор — более положительный электрод. Необходимая для пассивации и поддержания пассивного состояния сила тока определяется соотнощением поверхности анода и протектора, а также скоростью протекания катодной реакции. В качестве катодного протектора можно использовать вещества, которые соответствуют следующим условиям хотя бы частичная электропроводность, коррозионно-устойчивость в выбранной среде, потенциал (без тока) должен находиться в области устойчивой пассивности того металла, который защищают на протекторе при потенциале более отрицательном, чем потенциал без тока, должна происходить электрохимическая реакция, при которой часть необходимого количества электричества расходуется на поддержание металла в устойчивом пассивном состоянии.  [c.121]

На основании анодных и катодных кривых заряжения получены значения количества электричества, затраченного при анодной поляризации и отданного электродом при разряде (область потенциалов 0,55—1,15 В из расчета на 1 см видимой поверхности). Количество электричества, расходуемого на поляризацию, а также полученного при разряде для непропитанных графитов, в 3—5 раз больше, чем для пропитанных. Возможны два режима с применением протекторов из графитовых материалов. При первом режиме протектор работает в области потенциалов, более отрицательных, чем стационарный. При этом используется энергия его окислительно-восстановительных реакций. Регулятор потенциала включается в пусковой период или тогда, когда возникают условия, при которых мощность протектора недостаточна для сохранения устойчивого пассивного состояния. При втором режиме графитовый протектор работает как аккумулятор в об-  [c.128]

Кремний, как легирующий элемент, оказывает более эффективное влияние, чем хром, на склонность железа к пассивации и устойчивость пассивного состояния — кремнистый чугун с 15— 17% 81, в отличие от хромистых сталей аналогичного состава, бурно растворяющихся из активного состояния, пассивен в этих условиях, на его анодной поляризационной кривой отсутствует область питтингообразования, а скорость растворения из области пассивности на 3—4 порядка ниже. Он труднее, чем никелевые сплавы, переходит в состояние перепассивации, а скорость растворения в этой области при идентичных потенциалах ниже.  [c.18]

В процессе растворения металла на его поверхности одновременно протекают две электродные реакции анодное растворение металла и катодное восстановление окислителя. При достаточно длительном контакте металла с агрессивной средой коррозионный процесс стабилизируется и наступает так называемое стационарное состояние, характеризующееся равенством скоростей анодной и катодной реакций (/а = /к) и соответствующим значением потенциала кор. называемым стационарным или коррозионным потенциалом. Из условия стационарности следует, что для замедления скорости растворения металла достаточно снизить скорость хотя бы одной из электродных реакций. Основной характеристикой скорости анодного и катодного процесса являются их поляризационные кривые — зависимости анодной /з и катодной /к плотностей тока от потенциала Е. На рис. 5.1 приведена обобщенная потенциостатическая анодная поляризационная кривая. Кривые такого рода более подробно описаны в работах 14, 5, 6, 7]. Область АВ называется областью активного растворения. Вначале скорость растворения металла экспоненциально увеличивается с увеличением потенциала по уравнению Тафеля. В переходной области ВС происходит пассивация металла, приводящая к резкому замедлению коррозии. Потенциал максимума тока называется критическим потенциалом пассивации Е р, а соответствующая ему величина — критической плотностью тока пассивации /кр. Область D, характеризующаяся малыми скоростями коррозии (обычно 10- 4-10 А/см ), практически независимыми от потенциала, называется областью устойчивого пассивного состояния или пассивной областью. Пассивное состояние обусловлено образованием на поверхности металла тонких защитных пленок оксид-  [c.254]


Характер и устойчивость пассивного состояния в зависимости от условий коррозии могут быть весьма различными. Это иллюстрируется анализом реальных анодных поляризационных кривых.  [c.60]

Питтинговая коррозия представляет собой один из опасных видов коррозионного разрушения, характерного для условий, когда пассивное состояние сплава может частично разрушаться. При этом коррозии подвергаются весьма ограниченные участки металла, а вся остальная поверхность устойчива и находится в пассивном состоянии, что приводит к образованию глубоких поражений — точечных язв или питтингов.  [c.89]

Коррозионная стойкость хромистых сталей обусловлена их способностью к пассивации, поэтому большое значение имеют правильные условия их эксплуатации, определяющие, устойчивость пассивного состояния. Хромистые стали, находящиеся в напряженном состоянии в морской воде, в растворах хлорида натрия, перекиси водорода, а также Во влажном сероводороде, подвержены коррозионному растрескиванию.  [c.100]

О безопасности сочетания в одной и той же конструкции или изделии различных типов стали в условиях анодной защиты можно сделать вывод на основании сравнения поляризационных кривых, снятых на различных марках стали в примерно одинаковых условиях. Из приведенных выше данных следует, что область устойчивого пассивного состояния исследованных сталей лежит практически в одном и том же интервале потенциалов (см., например, рис. 13).  [c.133]

Столь значительный сдвиг потенциала анодного нарушения пассивного состояния (потенциала пробоя ) в сторону отрицательных значений для пришовной области ведет к особой опасности локального нарушения пассивности в тех коррозионных средах, где нержавеющая сталь при отсутствии напряжений находится в устойчивом пассивном состоянии, с образованием условий для усиленной локальной коррозии (в том числе коррозионного растрескивания) при наличии коррозионных гальванопар на поверхности сварного соединения типа активная пришовная зона — пассивная остальная поверхность.  [c.223]

Упрочнение стали 12Х18Н10Т при деформации в сульфате натрия объясняется действием барьерного механизма. В этой среде сталь находится в устойчивом пассивном состоянии. При низкой скорости деформации скорость образования пассивной пленки может превышать скорость ее разрушения, в результате чего прочная пассивная пленка становится барьером на пути вы- I ходящих дислокаций. Возможность прохождения последних через пассивную пленку резко падает. Это вызывает упрочнение поверхностного слоя металла, что в условиях эксперимента с особо-  [c.145]

Большое значение в определении роли среды и различных ее компонентов на процессы, протекающие при МКК, имеют потенциостатические методы исследований. Так, сравнение анодных потенциостатических кривых аустенитных коррозионно-стойких сталей, склонных и не склонных к МКК, показывает, что на материалах, восприимчивых к разрушению по границам зерен, ток анодного растворения в активном состоянии, области частичной пассивации и устойчивого пассивного состояния всегда Бгдше, чем для таких же материалов в аустенизированном состоянии 150]. С помощью потенциостатических исследований можно установить область потенциалов, при которых в дайной среде происходит наиболее сильная МКК, какие условия и добавки в среду вызывают смещение стационарного потенциала матери-  [c.59]

Методы контроля склонности материалов в МКК. Определение склонности коррозионно-стойких сталей к МКК производится по ГОСТ 6032 -75. Испытания, проводимые в соответствии с этим ГОСТом, дают удовлетворительные результаты. Однако в ряде случаев отмечается, что материалы, не показавшие склонность к МКК при стандартных испытаниях, в производственных условиях подвергаются уЧКК- Это может происходить по различным причина.м. В одних случаях в связи с тем, что в металле произошло незначительное обеднение хромом границ зерен. При этом они могут и не утратить способности к пассивированию в контрольной среде, но плотность тока в пассивном состоянии, пололшние и границы области устойчивого пассивного состояния все же изменяются. В этом случае обедненные зоны хоть и будут разрушаться быстрее, чем основной металл, но МКК пойдет медленнее и при испытаниях не проявится, так как для этого могут потребоваться не десятки, а сотни часов. Поэтому, учитывая несовершенство методов оценки результатов испытаний (загиб, изменение звука и др.), часто приходится в сомнительных случаях повторять испытания. Кроме того, получаемый результат может быть неодинаков для разных образцов одного материала, даже в пределах одного образца часто отмечается различие в устойчивости границ зерен.  [c.62]

Электрохимическое поведение исследуемых сталей мало отличается одно от другого. В стационарных условиях наиболее устойчивой является сталь 06Н28МДТ. Ее стационарный потенциал при температурах до 70°С лежит в области устойчивой пассивности (0,1 В). Однако с ростом температуры (80—90°С) стационарный потенциал изменяется до —0,5 В, а сталь подвергается значительной коррозии. Стационарный потенциал стали 10Х17Н13М2Т находится в области устойчивого пассивного состояния (+0,1 В) при температурах до 50 °С. Выше этой температуры происходит активация стали до потенциалов —0,7 В, что соответствует области активного растворения ее. Хромоникелевая сталь 12Х18Н10Т наименее устойчива в стационарных условиях. Стационарный потенциал ее хотя и лежит в области пассивного растворения стали (—0,05—0,05 В), однако она легко активируется и в активной области подвергается сильной коррозии, значительно увеличивающейся с  [c.143]


Имеющийся опыт эксплуатации аппаратуры в производстве каустической соды свидетельствует о том, что высокохромистая ферритная сталь 15Х25Т в присутствии небольших количеств хлората сохраняет устойчивое пассивное состояние и корродирует с малой скоростью (0,01 мм/год) в наиболее жестких условиях — при получении концентрированных растворов едкого натра (640— 750 г/л), когда процесс упарки осуществляется в аппаратах с принудительной циркуляцией щелочной пульпы, содержащей 12—14% твердой фазы КаС1.  [c.15]

Создание устойчивого пассивного состояния сплава может быть также осуществлено путем повышения эффективности катодного процесса коррозионной системы. Ранее считалось, что для повышения коррозионной устойчивости всегда желательно возможное понижение катодной эффективности. Однако такое положение действительно только при обычном нормальном ходе анодных поляризационных кривых, т. е. когда смещению потенциала в положительную сторону соответствует увеличение анодного тока и смещению потенциала в отрицательную сторону — увеличение катодного тока. При наличии пассивирующихся коррозионных систем, когда анодная поляризационная кривая не представляет монотонной зависимости между током и потенциалом (это детально было разобрано выше), минимальные коррозионные токи будут соответствовать пересечению катодной и анодной кривых на поляризационной диаграмме коррозии на участке устойчивого пассивного состояния. В этих условиях вполне вероятен случай, когда более эффективному катодному процессу будет соответствовать меньший коррозионный ток по сравнению с системой, имеющей меньшую катодную эффективность. Учитывая, что токи в области устойчивой пассивности могут быть на несколько порядков меньше, чем токи в зоне активного анодного растворения, очевидно, сколь значительным может быть снижение коррозии при правильном использовании явления пассивирования (перевода коррозионной системы в пассивное состояние).  [c.85]

Защищаемый сплав в данных условиях и данной коррозионной среде должен переходить в устойчивое пассивное состояние. Таким образом, этот метод так же, как и рассматриваемые ранее методы катодного легирования и анодной электрохимической защиты, применимы главным образом для нержавеющих сталей (в отсутствие активирующих ионов галогенов в растворе), титановых сплавов и других легко пассивирующихся материалов. Однако, как будет разобрано ниже, в некоторых условиях, наиболее благоприятных в отношении установления пассивного состояния, он применим также для более трудно пассивирующихся сплавов, например низколегированных сталей.  [c.170]

При концентрации окислителя на металле возможно установление двух стационарных потенциалов в пассивной или в активной областях. Пассивное состояние в этих условиях не будет самопроизвольно возобновляться. Другими словами, если в раствор с окислителем поместить активный металл, то он в этом случае не запассивируется. Если же металл предварительно будет запассивирован, то он сохранит пассивное состояние при погружении в такой раствор. Окислители с концентрацией Сд и создают устойчивое пассивное состояние, причем скорость коррозии не будет зависеть от концентрации окислителя. При концентрации окислителя скорость коррозии металла увеличивается вследствие того, что стационарный потенциал металла смещается в область перепассивации.  [c.190]

Х17Н13МЗТ, 06ХН28МДТ в сернокислых пульпах определяется устойчивостью пассивного состояния и коррозионной стойкостью. Введение окислителей (азотной кислоты, сернокислого оксидного железа, пенто-ксида ванадия) в этих условиях поддерживает устойчивость пассивного состояния коррозионностойких сталей и обеспечивает их высокую эро-зионно-коррозионную стойкость.  [c.121]

Наличие в металле только азота (сталь III) или только молибдена (сталь /) оказывается недостаточным для устранения склонности к питтинговой коррозии. Одновременное присугстБпе азота и молибдена является необходимым условием высокой устойчивости пассивного состояния к локальной анодной активации. Следует отметить, что в некоторых случаях, соответствующих, как правило, высокой агрессивности хлоридных растворов, на поверхности стали II наблюдали отдельные очень мелкие репассивирующиеся питтинги, т. е. зарождение питтингов на стали с молибденом и никелем йсе же возможно, хотя и затруднено, но дальнейшее развитие их полностью подавляется.  [c.198]

Глуховой, Андреево , Донцовым и Моисеевой было установлено [85], что дополнительное катодное модифициравание (0,2% Pt) сплавощ системы Та —Nb заметно повышает их коррозионную стойкость в таких агрессивных условиях, как 75%-ная серная кислота при 150° С (см. рис. 29). Видно, что ниобий (кривая I) и сплав ниобия с 5 % тантала (кривая 2) растворяются в указанных условиях с возрастающими скоростями. Скорость коррозии ниобия и его сплавов с 5% Та, дополнительно легированных 0,2 Pt (кривые 1 и 2 ), в начальный момент достаточно высокая, а затем быстро снижается в течение первых 10 час. испытания, после чего она принимает постоянное значение, гораздо более низкое, чем для тех же сплавов, не модифицированных платиной. На сплавах Nb—30% Та модифицирование 0,2 Pt дает дальнейшее повышение устойчивости. Сплав Nb—30% Та—0,2 Pt по своей устойчивости уже приближается к чистому танталу. Механизм положительного влияния платины вполне аналогичен обсужденному выше и определяется также смещением потенциалов коррозии в область устойчивого пассивного состояния сплава Nb—Та при накоплении на поверхности достаточного для этого количества платины.  [c.58]

Б алюминатно-щелочном растворе с концентрацией 300 г/л ЫагО при 115° (применительно к условиям работы кипятильных трубок вьшарных аппаратов на алюминиевых заводах) анодная поляризация полностью прекращала коррозию в спокойных и интенсивно перемешиваемых растворах [120, 121]. В этом случае поведение стали также характеризуется широкой областью устойчивого пассивного состояния (от —0,9 до —0,28 в) измерения показали, что плотность тока в перемешиваемых растворах составляет 11,5 и в неперемешиваемых 2,2 а/м .  [c.111]

ИЗ пассивного состояния в исследуемых условиях (рис. 4). На рис. 4 дан поперечный разрез модели искусственного питтинга после поляризации в растворе 0,5 N НС14-1 H2SO4 при потенциале -f0,44 в (пассивная область) в течение 20 час. Пропуш еп-ное при этом количество электричества 0,081 к соответствовало глубине образования питтинга в 67 мп (при расчете на образование Fe " , Сг ), что находилось в полном согласии с данными непосредственного измерения глубины питтинга. Из рисунка видно, что анодное растворение стали в пассивном состоянии происходило достаточно равномерно по всей поверхности образца. При увеличении концентрации хлор-иопов в растворе выше 0,5 N область устойчивого пассивного состояния сокращается. Для 0,75 N концентрации НС1 (см. рис. 3, кривая 5) явление анодного пробоя пленки и резкого возрастания тока начинается сразу по достижении потенциала полного пассивирования (точка а . Таким обра-  [c.10]


Смотреть страницы где упоминается термин Условия устойчивости пассивного состояния : [c.111]    [c.84]    [c.47]    [c.16]    [c.24]    [c.86]    [c.124]    [c.128]    [c.133]    [c.135]    [c.205]    [c.237]    [c.20]    [c.71]    [c.92]    [c.27]    [c.24]    [c.206]   
Смотреть главы в:

Теория коррозии и коррозионно-стойкие конструкционные сплавы  -> Условия устойчивости пассивного состояния



ПОИСК



Пассивность

Состояние пассивное

Состояние устойчивое

Условие устойчивости



© 2025 Mash-xxl.info Реклама на сайте