Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние среднего напряжения на пределы выносливости

Рис. 9. Влияние среднего напряжения на предел выносливости для мягкой стали 13 различных марок при осевом растяжении Рис. 9. Влияние <a href="/info/7313">среднего напряжения</a> на <a href="/info/1473">предел выносливости</a> для <a href="/info/311079">мягкой стали</a> 13 различных марок при осевом растяжении

Данные, показывающие влияние среднего напряжения на пределы выносливости сталей, представлены на рис. 2.3. Кривые этой фигуры пронумерованы в порядке возрастания пре-  [c.31]

Рис. 2.3. Влияние среднего напряжения на пределы выносливости Рис. 2.3. Влияние <a href="/info/7313">среднего напряжения</a> на пределы выносливости
Освещаются вопросы чувствительности материалов к концентрации напряжений, рассматривается влияние градиента напряжений и размеров детали, а также влияние среднего напряжения на величину ограниченного предела выносливости.  [c.4]

Прочность при переменных нагрузках. Изучали влияние шлаковых включений на предел выносливости сварных образцов из стали СтЗ. Отверстия в центре шва, залитые шлаком, имитировали шлаковые включения. Давление шлаковых включений на стенки шва составляло максимальное 10—12 кгс/мм , среднее 4—5 кгс/мм и нулевое. Испытания на выносливость проводили на гидропульсационной машине. Шлаки, оказывающие давление на стенки шва, повышали предел выносливости образцов, а шлаки, не оказывающие давления, не вызывали изменения предела выносливости по сравнению с образцами, отверстия которых шлаком не заполнены. Повышение усталостной прочности, вызываемое давлением шлаков, объясняется тем, что шлак, играя роль упругого тела, вставленного в отверстие, снижает концентрацию напряжений, обусловленную отверстием без шлака.  [c.64]

Учитывая влияние на предел выносливости при асимметричном цикле различных факторов, в том числе концентрации напряжений, абсолютных размеров сечения, состояния поверхности и т. д., исходят из экспериментально установленных закономерностей, заключающихся в том, что отношение предельных амплитуд напряжений гладкого образца и рассматриваемой детали остается постоянным независимо от величины среднего напряжения цикла. На основании этого можно построить схематизированную диаграмму предельных напряжений для детали (рис. 595).  [c.676]

Влияние средних напряжений. Для определения влияния средних напряжений а проводят испытания образцов на усталость (определяют пределы выносливости) и по результатам строят диаграмму амплитудных пределов выносливости  [c.250]


Если рассматривать остаточные напряжения сжатия, возникающие при поверхностном пластическом деформировании, как средние напряжения цикла, то их влияние на сопротивление усталости упрочненных деталей, выражающееся в существенном увеличении разрушающих напряжений, может быть также объяснено увеличением области существования нераспространяющихся усталостных трещин. Действительно, общая диаграмма изменения пределов выносливости сталей, подверженных поверхностному наклепу, хорошо согласуется с экспериментальной диаграммой влияния средних напряжений цикла на область существования нераспространяющихся усталостных трещин.  [c.94]

Асимметрия цикла. Существенное влияние на предел выносливости оказывает среднее напряжение цикла. Результаты подобных исследований представляют в виде диаграмм  [c.291]

Результаты, представленные в долях предела прочности материала при растяжении Ов, показаны на рис. 9.8 для сталей и в абсолютных напряжениях для высокопрочных алюминиевых сплавов — на рис. 9.9. Все приведенные результаты относятся к случаям когда среднее напряжение больше амплитуды напряжений, т. е. когда нет перемены знака в нагрузке. Видно, что для обоих материалов получена исключительно низкая выносливость, показывающая, что ушко весьма чувствительно к действию переменной Нагрузки. Для разрушающего числа циклов, равного 10 типовые значения амплитуды напряжений в поперечном сечении ушка по отверстию для сталей составляют только 47о предела прочности материала при растяжении и для алюминиевых сплавов —около 1,4 кГ/мм (грубо 2,5% предела прочности). Учитывая большой разброс данных, имеющийся всегда при условиях коррозии трения, а также разнообразие конструкций ушков и материала (диаметр болта изменяется от 5 до 70 мм как для стали, так и для дуралюмина), можно сказать, что получено хорошее приведение. Для сравнения с результатами приведения на рис. 9.10 показаны подлинные рассмотренные результаты для алюминиевых сплавов. Имеем очевидное улучшение результатов после приведения. Разброс частично объясняется разными значениями средних напряжений в различных испытаниях. В зависимости от порядка величины среднего напряжения на рисунке приняты различные обозначения точек. Для сталей, несомненно, мало влияние среднего напряжения, тогда как для алюминиевых сплавов определенное, хотя и небольшое, влияние имеется.  [c.235]

При несимметричном цикле. На диаграмме предельных напряжений, перестроенной с учетом влияния концентрации напряжений и масштабного фактора на предел выносливости (рис. 15), циклу со средним напряжением От И амплитудой соответствует точка М. Если она расположена ниже линии предельных напряжений, запас прочности Пд больше единицы. Величину п, надо определять исходя из конкретных особенностей работы детали.  [c.29]

На рис. 2.13 приведены некоторые конкретные результаты влияния шероховатости на предел выносливости материалов, исследованных в работе [1207]. Следует отметить существенное усиление влияния шероховатости на предел выносливости при наличии дополнительных средних растягивающих напряжений, а также зависимость этого эффекта от направленности неровностей по отношению к действующим напряжениям.  [c.144]

На основе детального анализа влияния средних напряжений цикла да предел выносливости сталей и алюминиевых сплавов при осевом нагружении предложено следующее уравнение [1036]  [c.178]

На рис. 2.30 [1025] приведены экспериментальные данные о влиянии средних напряжений растяжения и сжатия на пределы выносливости сталей и алюминиевых сплавов. Как видно из этого рисунка, амплитудные значения пределов вьшосливости при наличии средних напряжений сжатия существенно возрастают.  [c.181]

При определении коэффициента запаса прочности для конкретной детали надо учесть влияние коэффициента снижения предела выносливости ( тд)-Опыты показывают, что концентрация напряжений, масштабный эффект и состояние поверхности отражаются только на величинах предельных амплитуд и практически не влияют на предельные средние напряжения. Поэтому б расчетной практике принято коэффициент снижения предела выносливости относить только к амплитудному напряжению цикла. Тогда окончательные формулы для определения коэффициентов запаса прочности по усталостному разрушению будут иметь вид при изгибе  [c.562]


Фретинг-эффект. Сильное влияние на усталостную прочность титановых сплавов оказывает фретинг-эффект, или контактная коррозия в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [106, 158—160]. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и пр.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения ее в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [ 158, 160] сильно влияет только при низких значениях. При более прочных креплениях или плотных посадках при удельных давлениях более 30—50 МПа усталостная прочность изменяется мало. Так, прессовая посадка втулки с удельным давлением 50 МПа снижает усталостную прочность технически чистого титана с 320 до 112 МПа [ 158]. Дальнейшее увеличение удельного давления посадки до 200 МПа снизило O j до 103 МПа. В среднем предел выносливости при наличии фретинг-эффекта у титановых сплавов на воздухе при контактировании с однородным сплавом 20- 40 % от исходного предела  [c.161]

Количественное описание влияния основных конструктивных факторов на сопротивление усталости и его рассеяние для большого круга конструкционных металлов при линейном напряженном состоянии дано в работе [33]. Это позволяет определить предел выносливости деталей с концентрацией напряжений по средним значениям, выраженным через максимальные напряжения (сг-1)двт = <Тта /ад.  [c.126]

Результаты, полученные при исследовании влияния поверхностного пластического деформирования на возникновение и развитие усталостных трещин в сталях (см, гл. 6), также хорошо согласуются с приведенными теоретическими представлениями. Остаточные напряжения сжатия, образовавшиеся в результате наклепа в области вершины концентратора, приводят к резкому увеличению пределов выносливости по разрушению исследованных материалов, практически мало изменив при этом пределы выносливости по трещинообразованию. Если рассматривать эти остаточные напряжения как среднее напряжение цикла, то можно утверждать, что причиной образования широкой области нераспространяющихся трещин в этом случае было существенное изменение коэффициента асимметрии цикла от —1 до —ОО.  [c.55]

Теоретическая разработка вопроса о влиянии остаточных напряжений, возникающих при поверхностном пластическом деформировании, на сопротивление усталости была сделана И. В. Кудрявцевым. Показано, что относительный предел выносливости, измененный под воздействием остаточных напряжений, может быть определен с учетом интенсивности амплитуды цикла напряжений, а также относительных средних напряжений цикла и остаточных напряжений, действующих в тех же плоскостях, что и главные напряжения повторного нагружения. Свойства материала учитываются поправочным коэффициентом, меняющимся от нуля (для пластических материалов) до 0,4 (для хрупких материалов).  [c.140]

Выражения для могут быть заимствованы из некоторых критериев усталостных разрушений, предназначенных для проверки прочности при стационарных режимах сложного циклического нагружения. Подобных критериев предложено достаточно много [33, 56]. Они получены в разное время на основе обобщения результатов испытаний на усталость при плоских циклических напряженных состояниях. В табл. 3.1 даны некоторые наиболее удобные выражения приведенных напряжений а для критериев усталостных разрушений, представленных в виде а—Все эти выражения справедливы только в случае одинаковых периодов изменения всех компонентов напряжений. Кроме того, они обладают тем общим недостатком, что не учитывают средней за период цикла шаровой части тензора напряжений, которая оказывает существенное влияние на сопротивление усталости (особенно при трехосном напряженном состоянии). Известно, что наложение всестороннего сжатия увеличивает предел выносливости, однако числовые данные практически отсутствуют.  [c.88]

Возможность ускоренной оценки влияния технологических факторов доказана при исследовании влияния режима термической обработки и вида чистового шлифования на характеристики рассеяния предела выносливости стали ЗОХГСА (работа проводилась совместно с Киевским политехническим институтом). Испытаниям на усталость при изгибе с вращением подвергались образцы из стали ЗОХГСА после закалки с высоким (630°С), средним (510°С) и низким (190°С) отпуском, шлифованные обычными наждачными и алмазными кругами до одинаковой степени чистоты поверхности (8-й класс). Определение характеристик рассеяния пределов выносливости, осуществленное по двум методам — экстраполяции кривых усталости и возрастающей нагрузки, показало, что среднее значение предела выносливости повышается при снижении температуры отпуска приблизительно в соотношении 1 1,3 1,6. При этом среднее квадратическое отклонение также увеличивается, а рассеяние, характеризуемое коэффициентом вариации, остается практически неизменным. Замена обычных кругов алмазными в случае шлифования до одинаковой степени чистоты, поверхности не отразилась существенно на указанных характеристиках при всех трех режимах термообработки. Достигнутая экономия времени (1,3-10 циклов при возрастающей нагрузке, вместо 4,7-10 при постоянной амплитуде напряжений) и образцов (90 шт. вместо 500 шт.) свидетельствует  [c.188]


Только схематично, исходя из общих закономерностей влияния средних (постоянных) напряжений цикла на предельные амплитуды (см. гл. П), можно считать, что остаточные напряжения, подобно средним напряжениям, способны изменять предельные амплитуды по следующей зависимости где Ста — предельная амплитуда для сварного соединения с остаточными напряжениями Oq a i — предел выносливости соединения, без остаточных напряжений (при симметричном цикле осевого растяжения или изгиба) фа — коэффициент влияния асимметрии цикла (равный для конструкционных сталей 0,1—0,4).  [c.34]

Влияние абсолютных размеров поперечного сечения на эффект упрочнения образцов с концентрацией напряжений зависит от расположения очага зарождения трещины усталости. Если трещина зарождается у поверхности (например, в образцах с повышенной концентрацией напряжений), то эффект упрочнения, очевидно, не зависит от относительной толщины упрочненного слоя и, следовательно, от размеров образца. При средних же уровнях концентрации напряжений эффект упрочнения определяется взаимным расположением эпюр распределения пределов выносливости по сечению (с учетом влияния остаточных напряжений) и распределения рабочих напряжений.  [c.132]

Асимметрия цикла. Определенное влияние на величину предела выносливости оказывает величина среднего напряжения цикла.  [c.31]

На рис. 55 представлены данные Гровера и др. по оценке влияния среднего напряжения цикла на изменение предела выносливости конструкционной стали. Здесь в качестве парамезра отношения напряжений выбрано среднее напряжение цикла сТтСрис.. 55,а), а на рис.55, б коэффициент К. Видно, что по мерс увеличения о,п и К предел выносливости возрастает.  [c.89]

Кроме диаграмм предельных напряжений цикла для оценки влияния среднего напряжения цикла строят диаграммы предельных амплитуд цикла (диаграмма Хэйга) (рис. 57), которые характеризуют зависимость между значениями предельных амплитуд и амплитуд цикла Оа- В результате получают траничную линию амплитуд напряжений цикла, точка пересечения с которой с осью ординат (а, - 0) дает значение предела выносливости при знакопеременном напряжении, а на пересечении с осью абсцисс (сТа = 0) получается ква-зистатическое временное сопротивление Ов.  [c.91]

Проведен статистический анализ влияния различных законов распределения действующих напряжений и пределов выносливости на вероятность разрушения и статистические апасы прочности, который показал, что влияние закона распределения действующих напряжений на вероятность разрушения существенно слабее вариации нагрузки. Показано, что при нормальном законе распределения логарифмов действующих напряжений и пределов выносливости преобладающее влияние на вероятность разрушения и минимальные статистические запасы оказывает дисперсия нагрузки. Установлено, что при высоких значениях рассеяния действуюнщх напряжений даже значительное увеличение среднего запаса не приводит к увеличению минимального запаса прочности.  [c.422]

Испытания по изучению влияния средних напряжений цикла на величину предела выносливости проводят по одной из следующих лвух методик.  [c.32]

Уравнение (1.29), прямая 1 на рис. 22, б, соответствует результатам испытания хрупких материалов типа чугунов, уравнение (1.30), парабола 2 на рис. 22, б, хорошо описывает результаты испытаний пластичных металлов. Иногда используется комбинированное условие, представленное на рис. 22, б ломаной линией 3. Детальный анализ влияния средних напряжений цикла на величину предела выносливости сталей и алюминиевых сплавов был выполнен Хейвудом [207]. На основе этого анализа им было предложено следующее уравнение  [c.33]

Затраты на проведение экспериментов для точного определения границ области выдерживаемых в течение длительного времени без разрушения нагрузок очень велики, так что обычно для некоторого среднего напряжения определяют (о, 0) и предел выносливости Од для соответствующей величины. Используя значения предела текучести и предела прочности исследованного материала, строят диаграмму усталостной прочности. Очень хорошо влияние среднего напряжения цикла на выдерживаемые длительное время без разрушения амплитуды напряжений можно описать с помощью простых математических выражений (например, по Гудману или Герберу),  [c.72]

В формулах (16.11)...(16.15) t i и t j — пределы выносливости при изгибе и кручении при симметричном цикле напряжений и Тд — амплитуды циклов при изгибе и кручении и — средние напряжения циклов при изгибе и кручении К и К — эффективные коэффициенты концентрации напряжений при изгибе и кручении -коэффициент влияния абсолютных размеров поперечного сечения (масштабный фактор) - коэффициент влияния поверхностного упрочнения v /o и / — коэффициенты чувствительности к асимметрии цикла напряжений. Значения пределов выносливости 0 i и можно определять по формулам (1.14)...(1.17). При отсутствии осевой силы, действующей на ось или вал, и расчете оси или вала без учета растяжения или сжатия, что в обоих случаях соответствует симметричному циклу напряжений в сечениях вала, среднее напряжение цикла при изгибе Стд, = О, а амплитуда цикла при изгибе  [c.276]

Определенное влияние на предел выносливости оказывает среднее напряжение цикла. Изучение влияния средних напряжений цикла на предел выносливости проводят по одной из следугацих методик.  [c.177]

При повышенных температурах иепытания на усталость обычно наблюдается снижение пределов выносливости а связи с влиянием процессов ползучести, особенно в случае, если среднее напряжение цикла не равно нулю (кривые 1 и 4 на рис. 49). В углеродистых сталях в интервале температур испытаний 150 - 400 С наблюдается аномальное повышение пределов выносливости по сравнению с испытамиями при комнатной температуре, связанное с протеканием процессов динамического деформационного старения (рис. 49, кривая 3).  [c.81]

Влияние числа циклов пагружения на усталостную прочность, кривые выносливости, пределы выносливости. Зависимости среднего числа циклов до разрушения от величины амплитуды поремеп-иых напряжений цикла называются кривыми выносливости (рис. 4.30). В логарифмических координатах кривые выносливости представлены полигональными кривыми (отрезками прямых линий).  [c.94]

Теоретическое исследование нераспространяющихся усталостных трещин может быть проведено на основе анализа амплитуд истинных напряжений, действующих в вершине трещины, и условий достижения этими амплитудами критического значения с учетом влияния скорости нагр жения и температуры. Будет ли дальше распространяться возникшая и развившаяся на некоторую глубину усталостная трещина в вершине надреза при дальнейшем увеличении числа циклов нагружения, зависит от того, превышает или нет амплитуда истинного напряжения в зоне у вершины трещины критический предел прочности материала [21. Если амплитуда истинного напряжения у вершины трещины превышает критическое напряжение, то в рассматри-ваемой зоне возникает новая усталостная трещина. Если же критическое напряжение достигнуто не будет, то дальнейшего развития трещины не произойдет и такая трещина станет нерас-пространяющейся. Это предположение основано на экспериментах, в которых было показано, что пределы выносливости образцов с развившейся на некоторую глубину трещиной при испытании на растяжение-сжатие практически не зависят от номинального среднего напряжения цикла, а зависят только от амплитуды номинального напряжения.  [c.58]


Величина X = lg -т- 1) в уравнении (2) рассматривается как случайная, имеющая среднее значение, равное (—lg 0), и среднее квадратическое отклонение 8 Пр — квантиль нормального распределения, соответствующий вероятности разрушения Р %). В работах [3—6 и др.] приведены многочисленные экспериментальные данные, подтверждающие применимость уравнения подобия (2) для количественного описания влияния концентрации напряжений, масштабного фактора, формы сечения и вида нагружения на сопротивление усталости образцов и деталей из различных сталей, чугу-пов, алюминиевых, магниевых и титановых сплавов. Если испытания на усталость проводятся по обычной методике при количестве образцов 8—10 на всю кривую усталости, то отклонение б экспериментальных значений сг 1 от расчетных не превышает 8 % с вероятностью 95 %. При использовании статистических методов экспериментальной оценки пределов выносливости (метода лестницы , пробит -метода или построение полной Р — а — Х-диаграммы при количестве испытуемых образцов от 30 до 100 и более) аналогичное отклонение б не превышает 4 % с вероятностью 95 %.  [c.310]

Результаты экспериментального исследования влияния высоты гайки на сопротивление усталости, проведенного Г. Вигандом, К.-Г. Иллгнером и К. Г. Беелихом [45] (табл. 6.15) показывают, что при Я 1,25 предел выносливости стальных соединений практически не повышается. Если Н = (0,8. .. 1,25Ы, значение сГап увеличивается на 5. .. 12 %. Это обусловлено пркменением низкопрочных гаек и высоким средним напряжением, приводящим к появлению местных пластических деформаций в резьбе и улучшению распределения нагрузки.  [c.203]

При циклических испытани.чх на усталость определяют следующие характеристики предел выносливости, усталостную долговечность, чувствительность к концентрации напряжений, влиянию среды, температуры, частоты, асимметрии цикла и величины среднего напряжения цикла, к перегрузкам, масштабному фактору. Кроме того, оценивают степень повреж-денности металла при воздействии циклических нагрузок, скорость роста трещин, длительность инкубационного периода до появления трещины и длительность периода живучести.  [c.226]

Для решения этой задачи большую роль сыграли различные варианты статистических теорий прочности [1, 4, 14, 97]. Статистическая теория прочности наиболее слабого звена , предложенная Вейбуллом [97], позволила описать влияние абсолютных размеров образцов и неоднородности распределения напряжений на характеристики сопротивления хрупкому разрушению. Статистическая теория прочности Н. Н. Афанасьева [1 дала возможность охарактеризовать влияние конструктивных факторов на средние значения пределов выносливости деталей машин.  [c.59]

В условиях воздействия коррозионной среды усили- вается влияние асимметрии цикла на сопротивление усталости, что иллюстрируется данными, приведенными в табл. 3.17 [15]. Наложение средних сжимающих напряжений весьма благотворно действует на сопротивление коррозионной усталости, вследствие чего предел выносливости в воде только на 5% ниже предела выносливости на воздухе.  [c.124]


Смотреть страницы где упоминается термин Влияние среднего напряжения на пределы выносливости : [c.120]    [c.376]    [c.44]    [c.120]    [c.224]    [c.138]    [c.68]    [c.129]    [c.167]   
Смотреть главы в:

Проектирование с учетом усталости  -> Влияние среднего напряжения на пределы выносливости



ПОИСК



Влияние напряжений

Выносливости предел

Выносливость

Напряжения средние

Предел выносливости — Влияние



© 2025 Mash-xxl.info Реклама на сайте