Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технологическая надежность — основная характеристика оборудования

Технологическая надежность — основная характеристика оборудования. Технологическое оборудование — металлорежущие станки, пресса, литейные и сварочные машины, агрегаты для термообработки, прокатные станы и др. — является основной, наиболее дорогой частью технологической системы, от работоспособности которой зависит эффективность всего процесса. Надежность оборудования можно рассматривать с двух основных позиций — как надежность машины, когда оцениваются все виды отказов, и как надежность технологической системы, когда принимаются во внимание лишь те отказы, которые связаны с выпуском некачественной продукции.  [c.457]


Технологическая надежность оборудования — это его свойство сохранять в заданных пределах и во времени значения показателей, определяющих качество осуществления технологического процесса. К показателям качества технологического оборудования относятся его геометрическая точность, жесткость, виброустойчивость и другие, которые определяют точность обработки, качество поверхности и физические характеристики материала обрабатываемой детали. Хотя показатели качества изготовляемых изделий зависят не только от оборудования, но и от технологической оснастки, инструмента, режимов обработки, квалификации рабочего и других причин, возможности оборудования играют, как правило, основную роль. Поэтому не только обеспечение высоких начальных характеристик технологического оборудования, но и длительное их сохранение в процессе работы — необходимое условие надежного осуществления технологического процесса.  [c.457]

На завершающих стадиях проектирования (технический проект, разработка рабочей документации), когда основные проектные решения по выбранному варианту уже проработаны, т. е. определены технологический процесс, количество и тип оборудования, разработаны конструкции механизмов и пр., необходимо уточнение ожидаемых характеристик проектируемой системы, в том числе по производительности, с целью сравнения их с требуемыми (ожидаемая производительность и требуемая согласно производственной программе, ожидаемая точность обработки и допустимая, ожидаемые экономические показатели и нормативные). На данном этапе при расчетах ожидаемой производительности должны учитываться такие факторы, как проектные режимы работы, быстродействие механизмов и устройств и ожидаемый уровень их надежности, степень загрузки оборудования и пр. По результатам расчетов и сопоставления величин ожидаемой и требуемой производительности могут быть скорректированы проектные решения (режимы обработки, число параллельно работающих единиц оборудования, нормы обслуживания наладчиками, система эксплуатации инструментов и пр.). Расчеты производятся в условиях неполной и недостаточно достоверной исходной информации, особенно в части ожидаемой надежности работы, величины организационных простоев и пр.  [c.65]

В связи с созданием и внедрением в энергетику крупных теплоэнергетических установок с высокими параметрами пара, усложнением их технологических схем и режимов эксплуатации, повышением требований к их экономичности и надежности необходимо выполнение трудоемких инженерных расчетных исследований, которые практически невозможно провести в нужные сроки без применения современных ЭВМ и методов математического моделирования. В то время как общие вопросы математического моделирования теплоэнергетического оборудования электростанций как объекта оптимизации получили большое отражение в литературе, вопросы теплового расчета статических и динамических характеристик основного теплоэнергетического оборудования на ЭВМ, методов математического моделирования стационарных и нестационарных режимов этого оборудования, специфики реализации этих методов на современных ЭВМ не систематизированы и недостаточно освещены в печати.  [c.3]


Решение задачи надежности и долговечности современных машин и механизмов возможно при наличии высококвалифицированных кадров инженеров-конструкторов и технологов, в совершенстве владеющих современными достижениями науки в области трибологии, эффективными методами и технологиями модифицирования и приповерхностного упрочнения деталей и узлов трения машин и обрабатывающих инструментов. В нашей стране при подготовке инженеров в течение длительного периода недооценивалось значение трибологических факторов в обеспечении работоспособности машин, приборов и технологического оборудования. Это привело к тому, что многие изделия отечественного машиностроения до сих пор уступают лучшим мировым образцам по основным техническим и экономическим характеристикам.  [c.3]

Результаты эксплуатационных исследований технологических процессов, проводимых в условиях действующего производства, дают необходимый материал для разработки методики исследования машин-автоматов. Для условий массового поточного производства комплексные эксплуатационные исследования технологических процессов были поставлены Ф. С. Демьянюком [2] и под его руководством проводились в Институте машиноведения и в автомобильной промышленности в течение ряда лет [3, 4, 29]. Были проведены исследования точности обработки, производительности и надежности оборудования, различных методов базирования и зажима деталей, правильности выбора режимов резания, износа и порядка смены инструментов, возможности увеличения концентрации операций на одном автомате, заделов между станками поточных линий, способов загрузки и межоперационной транспортировки деталей и их влияния на условия выполнения технологических процессов автоматизированного производства, а также сравнение различных способов построения технологических процессов и поточных линий. Такой подход к эксплуатационным исследованиям позволил выявить основные факторы, влияющие на качество и надежность выполнения технологических процессов автоматизированного поточного производства, что побудило в дальнейшем более подробно изучить эксплуатационные характеристики высокопроизводительного оборудования.  [c.9]

Коэффициент использования линии т) характеризует общую эксплуатационную надежность и не отражает простои по различным причинам. Знание их количественной характеристики позволит определить главное направление совершенствования линии. Все простои автоматической линии можно разделить на следующие основные группы простоев из-за механического оборудования, системы управления, оснастки и технологического брака и организационных причин.  [c.130]

Можно выделить следующие основные этапы применения объективных средств контроля входной контроль материалов и комплектующих изделий все стадии технологического процесса изготовления деталей и узлов настройка и оценка функционирования приборов и аппаратуры, установленных на агрегатах машины или на монтажных панелях процессы общей сборки и монтажа машины настройка и оценка качества функционирования всего-комплекса оборудования собранной машины и сдаточный контроль контроль готовности изделия к работе в эксплуатации испытания и исследования характеристик качества и показателей надежности изделий.  [c.329]

Качество сварных соединений в значительной мере определяет эксплуатационную надежность и экономичность конструкций. Наличие в сварных соединениях дефектов — отклонений от заданных свойств, формы и сплошности шва, свойств и сплошности околошовной зоны может привести к нарушению герметичности, прочности и других эксплуатационных характеристик изделия, а при некоторых обстоятельствах вызвать аварию его в процессе изготовления, монтажа или работы. В реальных условиях производства дефекты возникают достаточно часто. Количество их — объективный показатель рациональности принятого технологического процесса, пригодности и кондиции используемых сварочных материалов и основного металла, квалификации кадров, наличия необходимого комфорта для работы сварщиков, оптимальности и технического состояния оборудования и оснастки и общей культуры производства, характерной для данного предприятия.  [c.223]


Основные этапы обеспечения эксплуатационной надежности любого СОТС на стадии проектирования технологического процесса изготовления деталей представлены на рис. 1.9. При разработке технологического процесса механической обработки с применением СОТС исходными данными являются параметры заготовки (материал, термообработка, размеры, припуски и т.д.) оборудование и режимы обработки на технологических операциях характеристики режущего инструмента рекомендуемое СОТС и способы его подачи в зону обработки и др. Задачами при этом являются определение эксплуатационной надежности выбранного СОТС в данном технологическом процессе и назначение допустимых пределов изменений наиболее значимых его показателей с целью поддержания заданной надежности технологического процесса механической обработки.  [c.59]

Роботы для миниатюрных изделий отличаются экстремальностью большинства основных технических характеристик, в частности, минимальными погрешностью позиционирования, размерами, массой, потребляемой энергией и максимальными надежностью, производительностью. Роботы этой группы характеризуются также сложной системой взаимодействия с различным технологическим и контрольно-измерительным оборудованием, наличием микропроцессорного управления [6], высокими требованиями к чистоте, температуре, а иногда и вакуумной гигиене производства и т. д.  [c.10]

Процесс упрочнения является финишной операцией, поэтому выполняется после механической и термической обработки детали. Вид (характер) упрочнения каждой конкретной детали выбирается, исходя из ее конструктивно-технологических и эксплуатационных характеристик с учетом технологических и технико-экономических показателей процесса, назначаемого из числа существующих или специально разработанных для широкофюзеляжных самолетов. При этом в качестве одного из основных условий требуется обеспечить высококачественное упрочнение большого количества силовых деталей при минимальном количестве применяемых способов упрочнения и типоразмеров оборудования. Эффективность выбранных режимов упрочнения предварительно оценивается по результатам испытаний стандартных образцов на малоцикловую усталость при растяжении асимметричным циклом нагружения, а также (при необходимости) по результатам испытаний образцов на сопротивление износу, коррозии под напряжением и других испытаний, В дальнейшем эффективность упрочнения окончательно оценивается по результатам испытания агрегатов на ресурс н надежность.  [c.229]

Рассмотрены методы обеспечения средств и систем автоматизации на стадиях их создания, проектирования и эксплуатации. Описаны способы расчета показателей надежности с учетом особенностей их применения на предприятиях нефтяной и газовой промышленности. Приведены нормативные требования к характеристикам надежности основных средств и систем, применяемых для автоматизации технологических процессов и оборудования в трубопроводном транспорте.  [c.351]

Впервые термин технологическая надежность станков был введен А. С. Прониковым [63]. Это понятие определено А. С. Прониковым как способность станка сохранять качественные показатели технологического процесса (точность обработки и качество поверхности) в течение заданного времени . В работах 11, 24, 72] были рассмотрены некоторые количественные оценки технологической надежности токарно-револьверных автоматов, прецизионных токарных станков, бесцентровых внутришлифовальных, радиально-сверлильных и других видов станков. В этих работах исследуется в основном только способность сохранять точность обработки в течение определенного периода времени. Но, очевидно, что точностные характеристики обработанных деталей зависят не только от состояния станка, но и от многих других факторов (состояние инструмента, оснастки, характеристики материалов и т. д.). Поэтому логическим развитием понятия технологическая надежность станка явилось введение термина технологическая надежность . И. В. Дунин-Барковский [24] определил это понятие как свойство технологического оборудования и производственно-технических систем, таких, как станок — приспособление-инструмент — деталь (СПИД), система литейного, кузнечно-прессового или другого производственно-технического оборудования или автоматических линий, сохранять на за-  [c.184]

Механнзмы подач и их приводы. К основным критериям механизмов подач (обычно шариковых, винтовых и волновых передач в современных станках с ЧПУ и многоцелевых станках, гидро-или пневмоцилиндров в ряде других видов оборудовани ) относятся равномерность подачи выходного звена, сохранение в про цессе работы заданного усилия подачи, жесткости (предварительного натяга), малое время восстановления скорости при реакции на нагрузку, влияющее на точность положения и стойкость инструмента, динамические характеристики. С учетом температурных деформаций эти свойства определяют также и технологическую надежность. Дополнительно к механизмам подач предъявляется требование защиты от перегрузок, что особенно актуально в условиях полной автоматизации работы технологических модулей ж мелкосерийного производства, когда технология не всегда достаточно отработана. Для ряда видов обработки важное значение имеет также такой критерий, как точность и время позиционирова-лия выходного звена — каретки или стола (более подробно эти вопросы рассмотрены в следующем разделе). Требования к приводу те же, что и у привода главного движения,— высокий КПД, уменьшение затрат времени на переключение подач, снижение динамических нагрузок на детали привода, шума и вибраций, обес печение высокой равномерности движения и надежности привода. Длительность сохранения технологической надежности станков существенно зависит от долговечности и свойств поверхностного слоя направляющих, винтовых пар и редукторов механизмов но-дач.  [c.27]


Комплексы СМ ЭВМ должны обеспечивать оптимальное (в смысле технико-экономических характеристик) подстраивание под широкий класс систем вплоть до комплексных интегрированных АСУ сложными технологическими объектами. В связи с этим СМ ЭВМ объединяет ряд архитектурных линий, для каждой из которых разрабатывается несколько совершенных систем программного обеспечения, включая и средства сопряжения с другими линиями. Основные характеристики процессоров СМ ЭВМ — разрядность, объем ОЗУ, быстродействие (тыс. коротких оп./с) —для интерфейсов Общая шина (ОШ), И41, 2К и ИУС [30] приведены на рис. 1.1. Наряду с объединением в семействе СМ ЭВМ машин с разными архитектурами, разным исполнением на передний план выдвигаются требования обеспечения возможности совместной работы различных по классу периферийных устройств, терминальных станций, устройств межмашинной связи и телеобработки в высокоэффективных режимах обработки информации, привязанных к конкретным объектам автоматизации. Поэтому одно из центральных мест в общей программе развития СМ ЭВМ занимают работы по созданию и освоению в серийнОхМ производстве периферийного оборудования для мини- и микроэвм. Периферийное оборудование составляет от 70 до 80% стоимости управляющих вычислительных комплексов и существенно влияет на основные технические и эксплуатационные характеристики автоматизированных систем — производительность, надежность и т. п. В целом периферийное оборудование СМ ЭВМ характеризуется очень большой номенклатурой, определяемой широким диапазоном применения СМ ЭВМ, высо-  [c.5]

Так, в книге правильно (и впервые ) поднимался вопрос о необходимости введения в автоматические линии межонерационных накопителей как средства уменьшения простоев, повышения производительности и надежности линий при тех же характеристиках основного технологического оборудования . Постановка этой проблемы помогла конструктору понять, что далеко не всегда следует создавать автоматическую линию с жесткой межагрегат-пой связью как единое целое. Однако напрасно тот же конструктор попытался бы найти в книге ответ на вопросы в каких линиях, сколько и где нужно встраивать межоперационные накопители, каков должен быть их тип и емкость и т. д.  [c.60]

Как было показано (см. гл. 4), производительность любого технологического оборудования в условиях серийного производства при изготовлении разнообразных изделий зависит от следующих основных факторов 1) характеристик обрабатываемых деталей средней длительности единичной обработки одного прохода инструмента / pi и среднего числа единичных обработок одного изделия s 2) характеристик технологического оборудования среднего вспомогательного времени на загрузку заготовок и съем изделий /всп средней длительности замены одной координаты tx2j средней длительности замены инструмента txs, средней длительности переналадки 6i, не зависящей от числа операций средней длительности переналадки 02, пропорциональной одной операции обработки показателей надежности в работеили  [c.182]


Смотреть страницы где упоминается термин Технологическая надежность — основная характеристика оборудования : [c.457]    [c.513]    [c.366]   
Смотреть главы в:

Надежность машин  -> Технологическая надежность — основная характеристика оборудования



ПОИСК



299 — Основные характеристики

299 — Основные характеристики характеристики

Н надежность оборудования

Оборудование (основное, технологическое)

Оборудование технологическое для

Основное оборудование

Основные технологические характеристики

Основные характеристики надежности

Технологическая надежность

Технологическая надежность оборудования

Технологические характеристики

Характеристика основного оборудования

Характеристики оборудования



© 2025 Mash-xxl.info Реклама на сайте