Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Продольный и продольно-поперечный изгиб прямого стержня

ПРОДОЛЬНЫЙ и ПРОДОЛЬНО-ПОПЕРЕЧНЫЙ ИЗГИБ ПРЯМОГО СТЕРЖНЯ  [c.483]

Все формулы настоящего параграфа получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу, так как поперечные сечения не остаются плоскими, а искривляются продольные волокна взаимодействуют друг с другом, давят друг на друга и находятся, следовательно, не в линейном, а в плоском напряженном состоянии. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечениях кроме М действует еще Л/и Q, можно пользоваться формулами, выведенными для чистого изгиба. Погрешность при этом получается весьма незначительной.  [c.246]


Плоский поперечный изгиб. Пусть поперечное сечение прямого стержня имеет две оси симметрии х, у. Пусть, далее, на этот стержень в одной из плоскостей, содержащих ось стержня г и одну из осей симметрии, х или у, его поперечного сечения, действуют сосредоточенные силы и распределенная нагрузка. В этих условиях изгиб стержня происходит в плоскости действия нагрузки и его упругая линия будет плоской кривой. Такой изгиб называют плоским. Чистый изгиб, рассмотренный в предыдущем параграфе, является частным случаем плоского поперечного изгиба, при котором нагрузка состоит только из двух изгибающих пар. При поперечном изгибе в произвольном поперечном сечении стержня кроме изгибающего момента действуют поперечная сила Q, а иногда еще и продольная сила N. При отсутствии продольной силы связь между изгибающим моментом М, поперечной силой Q и интенсивностью поперечной нагрузки д определяется формулами (5.3) и (5.4), справедливыми всюду, кроме самих точек приложения сосредоточенных поперечных сил.  [c.127]

Рассмотрим плоский чистый изгиб прямого стержня. Если на его боковую поверхность нанести сетку в виде продольных и поперечных прямых (рис.8.2а), то при изгибе можно заметить следующее (рис.8.2б)  [c.108]

В общем случае одновременной деформации растяжения (сжатия) и изгиба в произвольном поперечном сечении призматического стержня (бруса) внутренние усилия приводятся к продольному усилию N, направленному по геометрической оси стержня, и к изгибающим моментам и Му в главных центральных плоскостях инерции стержня. Напряжения от поперечных сил Qx и невелики и при расчете на прочность не учитываются. Поэтому одновременное действие изгиба и растяжения (сжатия) можно рассматривать как сочетание двух прямых изгибов в главных плоскостях инерции и центрального растяжения (сжатия).  [c.29]

Рассмотрим нагружение прямого стержня продольной силой и системой поперечных сил. Такой вид нагружения принято называть продольно-поперечным изгибом.  [c.450]

Влияние изгибных волн в полках сказывается и в том, что -некоторые действительные ветви дисперсии при ij схз стремятся не к прямой X = 1(, как на рис. 2, а к параболе Я = Хо = к Н, где Uq — изгибное волновое число в пластине. Первая ветвь стремится к параболе, соответствующей дисперсии изгибных поверхностных волн рэлеевского типа. Для стержней с широкими полками это проявляется на сравнительно низких частотах (см. рис. 4). Причина этого явления заключается в том, что на высоких частотах в используемых расчетных моделях изгиб полос является определяющим видом движения. Можно показать, что продольно-поперечные линейные динамические жесткости [1] становятся на высоких частотах пренебрежимо малыми по сравнению с изгибными линейными жесткостями. Поэтому движение здесь распадается на два независимых вида продольно-поперечные волны в стержне с абсолютно жесткими на изгиб полками и симметричные изгибные волны в полках, которые и обусловливают параболические дисперсионные зависимости.  [c.32]


Для балочных и рамных конструкций с прямолинейными стержнями, сечение которых подобрано по изгибающим моментам, относительное влияние продольной и поперечной деформации незначительно, поэтому учитывают только деформацию изгиба. Эпюра М состоит из прямого  [c.114]

В тех случаях, когда изменения кривизны оси бруска при изгибе того же порядка, как и начальная кривизна 1/г, второй член в левой части уравнения (1) мал по сравнению с первым и им можно пренебречь. Мы приходим, таким образом, к известному дифференциальному уравнению для изогнутой оси прямого стержня и можем прогибы слегка искривленного стержня вычислять по формулам, выведенным для прямых стержней. Заключение это справедливо лишь до тех пор, пока изгиб бруска происходит под действием только поперечных нагрузок. Влияние продольной силы в случае прямого и в случае слегка искривленного стержня будет различно, и это влияние мы постараемся оценить, пользуясь выражением для искривлений в форме тригонометрического ряда. Этот прием в применении к прямым стержням оказывается весьма удобным ), он дает возможность установить весьма простые формулы для оценки влияния продольной силы на прогиб и на величину наибольшего момента. Возьмем стержень с опертыми концами и расположим ко-  [c.284]

При исследовании малых прогибов упругих стержней показано, как можно ввести поперечный сдвиг в дифференциальное уравнение равновесия этой теории. Излагается расчет балок на упругом основании и важная для судостроения задача, поставленная И. Г. Бубновым, о расчете перекрестных балок. Рассмотрен продольно-поперечный изгиб балок, приводится точное, а также приближенное, развитое автором, решение в тригонометрических рядах. Дается систематизированное изложение теории выпучивания прямых сплошных стержней, полос, круговых колец, двутавровых балок, устойчивости вала при кручении. Уточняется известная задача Ф. С. Ясинского о расчете на устойчивость пояса открытых мостов. Приводятся точные и приближенные решения этой задачи энергетическим методом, данные самим автором. Особенно ценны результаты, относящиеся к устойчивости плоской формы изгиба полос и двутавровых балок. Теория изгиба, кручения и устойчивости двутавровых балок была разработана автором в 1905—1906 годах и оказалась основополагающим исследованием для последующих разработок в области расчета и общей теории тонкостенных стержней. Автор приводит компактные формулы для расчета критических сил.  [c.6]

Если концы стержня при изгибе свободно могут скользить по оси х и никаких продольных сил не приложено, то, очевидно, прогибы Ух слегка искривленного стержня ничем не будут отличаться от соответствующих прогибов стержня с идеально прямой осью. Иной результат мы получим, если перейдем к исследованию изгиба в случае действия не только поперечных нагрузок, но и продольных сил. Действие этих сил, как мы уже видели, зависит от искривления оси стержня, и потому начальная кривизна в задачах такого рода будет играть существенную роль. Исследование этих вопросов, конечно, можно выполнить путем интегрирования основного уравнения (а), но мы быстрее придем к цели, если воспользуемся представлением уравнения изогнутой оси стержня в форме тригонометрического ряда Начальное искривление оси стержня всегда можно представить в такой форме  [c.231]

Доказательство теоремы Кирхгофа было основано на допущении, что малым деформациям, которые могут возникать при допускаемых на практике напряжениях, будут соответствовать весьма малые перемещения точек тела и потому можно не делать различия в распределении сил до и после деформации. Когда мы переходим к телам, у которых один или два размера малы, т. е. исследуем вопросы о равновесии тонких пластинок или тонких стержней, то здесь встречаемся с возможностью появления весьма значительных перемещений при деформациях, не выходящих за допускаемые пределы. В таких случаях приходится принимать во внимание те изменения в действии сил, которые обусловлены перемещениями при деформации. В качестве простейшего примера приведем подробно рассмотренную нами задачу об одновременном действии на балку продольной силы и поперечных нагрузок. Если бы мы в этой задаче при оценке действия продольной силы исходили из первоначальной прямой формы, то заключили бы, что продольная сила вызывает лишь растяжение или сжатие стержня. Иной результат мы получим, если примем во внимание перемещения, вызванные деформацией. Мы находим, что продольная сила влияет на изгиб стержня и это влияние при некоторых условиях может быть весьма значительным.  [c.257]


При продольно-поперечном изгибе напряжения, как это видно из рис. 11.13, не прямо пропорциональны нагрузке, а изменяются быстрее, чем нагрузка (в случае сжимающей силы 5). В связи с этим даже незначительное случайное увеличение нагрузки сверх расчетной может вызвать весьма большое увеличение напряжений и разрушение конструкции. Поэтому расчет сжато-изогнутых стержней на продольно-поперечный изгиб следует производить не по допускаемым напряжениям, а по допускаемой нагрузке.  [c.579]

В общем случае пространственного действия сил на призматический стержень внутренние силы в поперечном сечении приводятся к шести компонентам продольной силе крутящему моменту М , поперечным силам Qy, и изгибающим моментам М , (рис. 6.18). Если ось X—геометрическая ось стержня, а оси у и г—главные центральные оси инерции поперечного сечения, центр тяжести которого совпадает с центром изгиба, то и определяют собой поперечный изгиб в плоскости ху, а ( я —поперечный изгиб в плоскости хг. Таким образом, стержень испытывает одновременную деформацию растяжения или сжатия, кручения и двух прямых поперечных изгибов.  [c.150]

Предположим, к брусу с защемленным концом приложены на свободном конце сила Р, действующая вдоль его оси, и нагрузка q, перпендикулярная оси (рис. 156, а). Осевая сила Р вызывает растяжение бруса, а нагрузка q — его прямой изгиб. Продольная сила в любом поперечном сечении стержня N = Р нормальные напряжения, соответствующие продольной силе, т. е. деформации растяжения, распределяются по сечению равномерно их величина определяется формулой  [c.245]

В главах 1-7 изложены основы сопротивления материалов расчет прямых стержней при простейших видах напряженно-деформированного состояния и стержневых систем, в том числе, ферм и пружин. Главы 9-14 сборника охватывают основы теории напряженного и деформированного состояний, прочность стержневых систем при сложном напряженном состоянии, безмомент-ные оболочки вращения, продольно-поперечный изгиб и устойчивость стержней, модели динамического нагружения стержневых систем, учет эффектов пластичности и элементы методов расчета на усталость. Кроме того, добавлен материал, касающийся стержней большой кривизны, а также задачи повышенной сложности. Общие теоретические положения вынесены в первый параграф приложения. Основные гипотезы сопротивления материалов сформулированы в виде аксиом, что призвано подчеркнуть феноменологический подход к построению фундамента этой науки как раздела механики деформируемого твердого тела.  [c.6]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


При вычислении деформаций кривых брусьев мы пользовались до сих пор тео ремой Кастилиано, но эта задача может быть решена, как в случае прямых брусьев, путем введения фиктивных сил. Вычисления особенно упрощаются в случае тонких стержней, когдй можно пренебречь влиянием на деформации продольных и поперечных сил. Рассмотрим стержень АВ (рис. 323), заделанный на конце А и нагруженный в его плоскости симметрии ху. Для определения перемещения конца рассмотрим бесконечно малое перемещение ВС этого конца вследствие изгиба элемента тп стержня,. Пользуясь уравн<ением (214) для определения изменения угла между двумя смежными поперечными сечениями тип, находим  [c.323]

Так как в любом сечении стержня на этом участке действует одинаковый изгибающий момент, то изменение кривизны однородного стержня будет одним и тем же. Это легко обнаруживается, если на боковую поверхность стержня нанести сетку нз продллькых и поперечных прямых (рис. 8.7). После деформаиии изгиба продольные линии и ось стержня примут форму дуг окружностей, а поперечные линии останутся прямыми. Следова-  [c.71]


Смотреть страницы где упоминается термин Продольный и продольно-поперечный изгиб прямого стержня : [c.128]    [c.74]    [c.327]    [c.445]    [c.14]   
Смотреть главы в:

Сопротивление материалов  -> Продольный и продольно-поперечный изгиб прямого стержня



ПОИСК



Изгиб поперечный

Изгиб продольно-поперечный

Изгиб продольный

Изгиб прямой

Изгиб прямых стержней

Изгиб стержня

Изгиб стержня поперечный

Изгиб стержня стержня

Изгибающие при продольно-поперечном изгиб

Поперечный и продольный изгибы

Продольный изгиб прямого стержня

Прямой продольно-поперечный изгиб

Стержни Изгиб продольно-поперечный

Стержни Изгиб продольный



© 2025 Mash-xxl.info Реклама на сайте