Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазовые и структурные превращения в металлах при сварке

ФАЗОВЫЕ И СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ В МЕТАЛЛАХ ПРИ СВАРКЕ  [c.490]

Сварные соединения, выполненные сваркой плавлением, можно разделить на несколько зон, отличающихся макро- и микроструктурой, химическим составом, механическими свойствами и другими признаками сварной шов, зону сплавления, зону термического влияния и основной металл (рис. 5.1). Характерные признаки зон связаны с фазовыми и структурными превращениями, которые претерпевают при сварке металл в каждой зоне.  [c.95]


При сварке в металле происходят термодеформационные и физико-химические процессы. Термодеформационные процессы заключаются в упругопластическом деформировании металла при неравномерном нагреве в процессе сварки и возникновении вследствие этого временных и остаточных напряжений. Физикохимические процессы при сварке происходят в твердом и расплавленном металле и характеризуются фазовыми и структурными превращениями, растворением и выделением веществ из раствора, диффузией и другими явлениями.  [c.406]

Фазовые и структурные превращения при сварке конструкционных сталей нередко вызывают понижение технологической прочности, механических и эксплуатационных свойств металла сварных соединений. Под технологической прочностью понимают способность материалов без разрушения выдерживать термомеханические воздействия в процессе сварки. В условиях указанных воздействий часто существенно понижаются механические свойства металла, что вместе с довольно высокими сварочными деформациями и напряжениями может служить причиной образования трещин.  [c.511]

Трещины при сварке. Склонность металлов к образованию трещин при сварке является одним из основных показателей их свариваемости. Она обусловливает технологическую прочность — способность материалов выдерживать без разрушения различного рода воздействия в процессе их технологической обработки. При сварке разрушения могут происходить в процессе кристаллизации (горячие трещины) и в процессе фазовых н структурных превращений в твердом состоянии (холодные и другие виды трещин). Сварка может сопровождаться образованием трещин различной протяженности в сварном шве или прилегающей к нему зоне.  [c.503]

Различия в способах доведения металла до расплавления вызывают различные термические циклы, обусловленные спецификой введения тепловой энергии. Таким образом каждому способу сварки присущи свои, меняющиеся в сравнительно небольшом диапазоне скорости нагрева и охлаждения. Наряду с химической активностью титановых сплавов при высокой температуре и поглощении вредных примесей характерны фазовые и структурные превращения при термическом цикле сварки, обусловленные различными скоростями нагрева и охлаждения. Детали и узлы из титановых сплавов сваривают после полного режима термической обработки.  [c.328]


Под воздействием сварки в металле сварного соединения происходит ряд процессов образование физического контакта и металлической связи при смачивании или в процессе совместной пластической деформации, кристаллизация, диффузия, фазовые и структурные превращения, появление сварочных деформаций и напряжений. Это процессы местного характера, обусловливающие макро- и микроскопическую неоднородность состава, структуры и напряженного состояния сварного соединения по сравнению с основным металлом. Неоднородность, зависящая от физико-химических свойств основного и присадочных материалов, от способа, технологии сварки и конструкции соединения, предопределяет различную технологическую и эксплуатационную прочность и надежность сварной конструкции.  [c.8]

Структурные превращения металла в зоне термического влияв ия происходят в соответствии с температурой, до которой нагревается металл при сварке, и скоростью охлаждения. Участки металла, расположенные на разных расстояниях от оси сварного шва, нагреваются неодинаково. Если сопоставить кривую распределения максимальных температур с диаграммой состояния железо— углерод, позволяющей определить фазовые и структурные превращения стали с определенным содержанием углерода, то станет очевидным, что зона термического влияния неоднородна по структуре.  [c.382]

Образование холодных трещин при сварке в металле шва и околошовной зоны обусловлено резким изменением механических свойств и характера напряженного состояния в процессе фазовых и структурных превращений.  [c.157]

В процессе нагрева и охлаждения металла при сварке получает развитие целый ряд фазовых и структурных превращений. Под фазовыми превращениями (переходами I рода) понимают превращения с образованием новых фаз, отличающихся от исходных атомно-кристаллическим строением, часто составом, свойствами и разграниченных с ними поверхностями раздела (меж-фазными границами). При образовании новой фазы в ее объеме меняется свободная энергия, скачкообразно изменяются энтропия, теплосодержание и в момент превращения теплоемкость стремится к бесконечности [1]. В связи с этим фазовое превращение сопровождается выделением или поглощением теплоты. При структурных превращениях (переходах П рода) происходит перераспределение дефектов кристаллической решетки, легирующих элементов и примесей и изменение субструктуры существующих фаз. Структурные превращения сопровождаются плавным изменением свободной энергии, энтропии и теплосодержания и скачкообразным — теплоемкости и не сопровождаются выделением теплоты.  [c.96]

Например, в сталях перлитного класса эти изменения связаны с мартенситным превращением, в титане и его сплавах — с гидридным превращением. Превращения этого типа сопровождаются резким изменением удельного объема. Поэтому при сварке металлов и сплавов, претерпевающих фазовые и структурные превращения, развитие внешних напряжений обусловлено не только неравномерным нагревом и охлаждением отдельных участков сварного соединения, но и изменением удельного объема в процессе фазовых превращений.  [c.77]

Происходящие в зоне термического влияния структурные изменения в значительной мере зависят от природы свариваемого металла, режима и способа сварки В чистых металлах и однофазных сплавах, не претерпевающих аллотропических превращений, нагрев при сварке вызывает только рост зерна. В полиморфных же металлах и сплавах этот нагрев вызывает, кроме того, фазовые и структурные превращения.  [c.179]

Образование сварочных деформаций и напряжений. Основными причинами образования собственных напряжений и деформаций в сварных соединениях и конструкциях являются неравномерный нагрев и охлаждение металла при сварке, структурные и фазовые превращения, механическое (упругое и пластическое) де( р-мирование при сборке, монтаже и правке сварных узлов и конструкций.  [c.33]


На рис. 26.1 приведена схема зон структурных изменений применительно к сварке углеродистой стали. Максимальные изменения структуры металла, его химического состава, а также вероятность возникновения различного рода дефектов наблюдаются в шве и зоне сплавления. Участок перегрева характеризуется существенным увеличением зерна, наличием полных структурных и фазовых превращений. На участке полной перекристаллизации температура нагрева выше температуры фазовых превращений, однако интенсивность превращений меньше, чем на участке перегрева, так же как и меньше время пребывания металла при этих температурах, поэтому существенного увеличения зерна здесь не происходит. В рассматриваемых зонах закали-вак)щихся сплавов возможно образование типичных закалочных структур. Связанное с этим снижение пластичности металла может служить причиной появления таких дефектов, как трещины, способствовать уменьшению прочности изделия.  [c.496]

Таким образом, различные участки основного металла характеризуются различными максимальными температурами и различными скоростями нагрева и охлаждения, т.е. подвергаются своеобразной термообработке. Поэтому структура и свойства основного металла в различных участках сварного соединения различны. Зону основного металла, в которой под воздействием термического цикла при сварке произошли фазовые и структурные изменения, называют зоной термического влияния. Характер этих превращений и протяженность зоны термического влияния зависят от состава и теплофизических свойств свариваемого металла, способа и режима сварки, типа сварного соединения и т.п.  [c.259]

Механизм образования напряжений и деформаций при сварке. Классификация напряжений. Остаточные напряжения при сварке возникают в результате появления термопластических деформаций, которые образуются от неравномерного распределения температуры в изделии. Такие деформации бывают упругие и упругопластические. Последние являются источником остаточных напряжений при сварке и структурных и фазовых превращений (происходящих в основном при сварке легированных сталей) при относительно невысоких температурах, сопровождающихся местными изменениями плотности и объема металла.  [c.89]

Для исследования кинетики изменения механических свойств в условиях термического цикла сварки образцы с выточкой в средней части нагревают в деформирующем устройстве и при заданной температуре цикла подвергают разрыву. Эти испытания позволяют определить температурные интервалы, в которых вследствие фазовых или структурных превращений происходит резкое изменение свойств металла.  [c.582]

Приведенные выражения справедливы только в узких интервалах температур Т — То, где а можно считать величиной, не зависящей от температуры. На самом деле температурный коэффициент линейного расширения зависит от температуры и, кроме того, резко изменяется при всех структурных и фазовых превращениях в металле. В качестве примера рассмотрим характер объемных изменений при охлаждении металла ванны для случая сварки малоуглеродистой стали.  [c.298]

В тех случаях, когда металл шва и околошовной зоны в процессе охлаждения претерпевает фазовые или структурные превращения, связанные с изменением его удельного объема и значительным ухудшением пластических свойств, трещины могут возникать и в области низких температур — ниже 200 °С. Подобные явления имеют место, например, при сварке закаливающихся сталей. Такие трещины называются холодными. Они могут быть поперечными (в шве, чаще в околошовной зоне), а также располагаться параллельно границе сплавления (отколы).  [c.320]

Склонность металла к росту зерна. Ферритные стали весьма чувствительны к нагреву, при котором значительно укрупняется зерно феррита. Отсутствие в таких сталях фазовых или структурных превращений делает последующее измельчение зерна в процессе охлаждения невозможным. Поэтому снижается прочность, пластичность и кислотостойкость металла, а в холодном состоянии проявляется хрупкость. Рост зерен феррита, особенно интенсивный в околошовной зоне, возможен и в металле шва. Чтобы предупредить его, следует создавать тепловой режим сварки, исключающий перегрев металла. С этой точки зрения выгодны режимы с малой погонной энергией и специальные технологические приемы (сварка короткими участками, валиками малых сечений, с перерывами и т. д.). Для получения металла шва с достаточно измельченным зерном целесообразно применять сварочные материалы, содержащие элементы-модификаторы (И, А1 и др.).  [c.343]

Монография состоит из семи глав. В гл. I рассмотрены основные положения теории фазовых превращений в металлах и сплавах в твердом состоянии, а также закономерности превращений железа, титана и их сплавов в изотермических условиях. В гл. II показаны условия их протекания в зоне термического влияния при сварке плавлением. В гл. III описаны новые методы и аппаратура для изучения кинетики фазовых превращений и изменений структуры и свойств металлов в неравновесных условиях при сварке и термомеханической обработке, а также для исследования задержанного разрушения и образования холодных трещин. В гл. IV приведены результаты исследования превращений при непрерывном нагреве, кинетики роста зерна и гомогенизации аустенита и Р-фазы сплавов титана при сварке. В гл. V рассмотрены основные закономерности фазовых превращений в условиях непрерывного охлаждения при сварке. В гл. VI изложен механизм задержанного разрушения сталей и сплавов титана, установлены критерии оценки этого явления и показано влияние легирующих элементов, параметров термического цикла и жесткости сварных соединений на" сопротивляемость этих материалов образованию холодных трещин при сварке. В гл. VII приведены характеристики свариваемости сталей и сплавов титана различных структурных классов и систем легирования, сформулированы критерии выбора технологии и режимов их сварки и показаны пути регулирования структуры и свойств сварных соединений как в процессе сварки, так и при последующей термической, термомеханической или механико-термической обработке.  [c.10]


Наличие третьего участка (рис. 10, 3) и тип структурных изменений в нем зависят от исходного состояния основного металла перед сваркой. При сварке отожженного металла третий участок в зоне термического влияния практически отсутствует. При сварке сталей или сплавов титана после упрочняющей термической обработки типа закалка , закалка и отпуск или закалка и старение , а также в нагартованном состоянии (после ковки или прокатки) в этом участке, как правило, происходит разупрочнение. В первом случае оно обусловлено процессами распада пересыщенных твердых растворов (отпуском мартенсита или старением высокотемпературных остаточных фаз) и последующей коагуляцией упрочняющих фаз (карбидов в сталях и интерметаллидов и химических соединений в сплавах титана). Во втором случае к разупрочнению преимущественно приводят процессы рекристаллизации обработки. Этот третий участок принято называть участком или зоной разупрочнения, отпуска или рекристаллизации. Наиболее резкое разупрочнение металла обычно имеет место у границы этого участка с участком неполной перекристаллизации, где максимальные температуры нагрева близки к нижней критической точке фазового превращения Г ,ф,п. Поэтому основными параметрами термического цикла участка разупрочнения являются максимальная температура нагрева = н.ф.п и длительность (или р) пребывания металла при сварке выше температуры отпуска (или  [c.39]

В значительной степени технологичность конструкций сварных деталей зависит от поведения материала при местном нагреве до температуры плавления. При этом изменяются физико-механические свойства металла в связи со структурными изменениями, фазовыми превращениями и изменением размера зерна. Указанные изменения зависят от химического состава исходного металла и состояния металла перед сваркой. При сварке в околошовных зонах появляются высокие внутренние напряжения, которые вызывают коробление детали и способствуют появлению трещин. На образование трещин в околошовных зонах в некоторой степени влияют конструктивные факторы свариваемых деталей, толщина свариваемых деталей, вид сварки, размеры и расположение сварных швов, жесткость крепления деталей при сварке и др.  [c.120]

При сварке плавлением металл, заполняющий шов и находящийся вблизи шва (околошовная зона), претерпевает существенные фазовые превращения вследствие быстрого нагрева до температуры плавления и последующего охлаждения. Условия расплавления и охлаждения металла в шве и структурные изменения металла в околошовной зоне определяют свойства сварного соединения.  [c.257]

Под сварным соединением понимается металл шва и околошовная зона основного металла. Околошовной зоной называется узкий участок основного металла вдоль шва, который в процессе сварки не расплавлялся, но подвергался воздействию высоких температур. V некоторых сталей на участке околошовной зоны при нагреве до критической температуры (723°С) и выше происходят структурные фазовые превращения (изменение формы и размеров зерен). Это явление называется вторичной кристаллизацией. Участок околошовной зоны таких сталей, на котором произошла вторичная кристаллизация, называется зоной термического влияния. При ручной дуговой сварке покрытыми электродами ширина зоны термического влияния может составлять 3—6 мм. В металле шва могу  [c.88]

Начальными называются собственные деформации, имевшиеся в детали до сварки. При протекании в металле структурных и фазовых превращений вызванные ими деформации входят в .  [c.50]

II. В условиях сварочного нагрева проблема физико-химической и термомеханической совместимости компонентов формулируется не менее остро, чем при производстве КМ. Влияние сварки на структурные изменения в КМ можно рассмотреть на примере соединения, образующегося при проплавлении дугой волокнистого КМ поперек направления армирования (рис. 12.1). Если металл матрицы не обладает полиморфизмом (например, алюминий, магний, медь, никель и др.) то в соединении можно выделить четыре основные зоны 1 - зона, нагреваемая ниже температуры возврата матрицы (по аналогии со сваркой обычных материалов этот участок может быть назван основным) 2 - зона, ограниченная температурами возврата и рекристаллизации металла матрицы (зона возврата) 3 - зона, ограниченная температурами рекристаллизации и плавления матрицы (зона рекристаллизации) 4 -зона нагрева выше температуры плавления матрицы (сварной шов). Если матрицей в КМ являются сплавы титана, циркония, железа и других металлов, имеющих полиморфные превращения, то в зонах 3 к 4 появятся подзоны с полной или частичной фазовой перекристаллизацией матрицы.  [c.170]

Теплота, выделяемая при сварке, распространяется вследствие теплопроводности в основной металл. В каждой точке околошовной зоны температура вначале нарастает, достигая максимума, а затем снижается. Чем ближе эта точка расположена к границе сплавления, тем быстрее в ней происходит нагрев металла и тем выше максимальная температура нагрева. Поэтому структура и свойства основного металла в различных участках зоны термического влияния различны. Протяженность зоны термического влияния и характер структурных преврашений в ней зависят от состава и теплофизических свойств свариваемого металла, способа и режима сварки, типа сварного соединения и т.п. Основной металл — нагартованный или после отжига на снятие напряжений — претерпевает в этой зоне возврат и рекристаллизацию. Если свариваемый материал является полиморфным, т. е меняет кристаллическую решетку в зависимости от температуры, то в зоне термического влияния сварки происходят фазовые превращения. Степень развития этих превращений в каждом слое зоны зависит от максимальной температуры нагрева слоя, длительности нахождения выше температуры фазового превращения, скорости нагрева и охлаждения.  [c.52]

Сварное соединение можно разделить на три основные зоны, имеющие различные микроструктуры А — зона основного металла, Б — зона термического влияния, В — зона иеталла шва (рис. 38). Металл шва (наплавленный металл) пмеет структуру литой стали. Зоной термического влияния называют прилегающий к шву участок основного металла (околошовная зона), в котором произошли структурные фазовые превращения (изменение формы и размера зерен) вследствие нагрева в процессе сварки, до температуры выше критической (723°С). При ручной дуговой сварке штучными электродами ширина зоны термического влияния составляет 3—6 мм. Обычно зона термического влияния имеет низкие механические свойства, поэтом у качество сварного соединения частично определяется свойствами и протяженностью зоны термического влияния.  [c.84]

Коррозионное растрескивание в значительной мере определяется структурой материала. Так, эксперименты с монокристаллами железа и реальными сталями показали, что только поли-кристаллические материалы склонны к коррозионному растрескиванию [8, 19]. Известно, что даже незначительные загрязнения границ зерен металла, повышение концентрации дислокаций в металле и другие подобные явления понижают стойкость материалов к растрескиванию. При термической обработке и сварке деталей склонность к коррозионному растрескиванию зависит от фазовых и структурных превращений в системе Fe -С. Так, отпуск при температурах 150-400 °С (в зависимости от химического состава стали), обусловливающий образование структуры отпущенного мартенсита, повышает склонность материала к коррозионному растрескиванию [8]. В целом считается, что термодинамически менее устойчивые структуры (Miap-тенсит) более склонные к коррозионному растрескиванию, чем устойчивые отожженные.  [c.42]


Холодные трещины образуются в металле шва и око лошовной зоны из-за резкого изменения механических свойств, а также характера напряженного. состояния вследствие фазовых и структурных превращений. В образовании холодных трещин при сварке сталей существенную роль играет водород, который выделяется из твер-ддго раствора в имеющиеся в металле микрообъемы (пустоты). В них выделивщийся атомарный водород соединяется в молекулы и создает в окружающем объеме металла внутреннее давление, которое образует высокое напряжение, способствующее образованию трещин при нагрузке и даже без нагрева.  [c.61]

При сварке металлов и сплавов, претерпевающих фазовые и структурные превращения, в сварных соединениях развиваются напряжения первого рода, обусловленные неравномерным нагревом и охлаждением, изменением удельного объема в процессе фазовых превращений и разностью теплофизических и механических свойств отдельных участков соединения. Эти напряжения уравновешиваются в макрообъемах металла.  [c.577]

При оценке свариваемости титана и выборе рациональной технологии и режимов его сварки необходимо учитывать особенности фазовых и структурных превращений в околошовнай зоне и их влияние на механические свойства и структуру металла.  [c.279]

При сварке полиморфных металлов и пх сплавов в шве и зоне термического влияния протекают фазовые и структурные превращения. Полной вторичной перекристаллизации подвергаются шов и околошовная зона, нагреваемая при сварке выше температуры аллотропического превращения. В условиях быстрого охлаждения в этих участках возможна закалка с образованием метастабиль-ных структур и резким снижением пластических свойств сварного соединения (мартенсит в легированных сталях перлитного и мартенситного класса, углеродистых сталях, титане, цирконии и их сплавах). В околошовной зоне вследствие высокотемпературного нагрева наблюдается перегрев и 1нтенсивны1"1 рост зерна. В этой зоне пластические Boii TBa ос Ювного металла обычно снижаются иаиболее резко, особенно в тех случаях, когда перегрев сочетается с последую-)цей закалко .  [c.153]

Например, в сталях перлитного и мартенситного класса эти изменения связаны с мар-тенситным, а иногда и промежуточным превращениями в титане, цирконии и их сплавах — с гидридным превращением. Превращения этого типа сопровождаются резким изменением удельного объема (фиг. 20). Поэтому при сварке металлов и сплавов, претерпевающих фазовые и структурные превращения, развит11е напряжений первого рода обусловлено не только неравномерным нагревом и охлаждением отдельных участков сварного соединения и разницей в их теплофизических и механических свойствах, но и изменением удельного объема в процессе фазовых превращений.  [c.157]

При сварке в сплавах титана происходят сложные фазовые и структурные превращения. Ч)твствительность к сварочному термическому циклу выражается в протекании полиморфного превращения а <-> Р резком росте размеров зерна Р-фазы и перегреве на стадии нагрева образовании хрупких фаз при охлаждении и старении неоднородности свойств сварных соединений, зависящих от химического и фазового состава сплавов. Вследствие низкой теплопроводности и малой объемной теплоемкости титана время пребывания металла при высоких температурах значительно больше, чем для стали, что является причиной перегрева, резкого увеличения размера зерен Р-фазы и снижения пластичности титана. Превращение Р а в зависимости от состава сплава и температурно-временных условий сварки может сопровождаться возникновением стабильной а-и метастабильных а -, а"-, а -, со-, Р-фаз, а также уфэзы. а -фаза характеризуется зака-  [c.128]

Нагрев и охлаждение металлов вызывают изменение линейных размеров тела и его объема. Эта зависимость выражается через функцию свободных объемных изменений а, вызванных термическим воздействием и структурными или фазовыми превращениями. Часто эту величину а называют коэффициентом линейного расширения. Значения коэффициентов а в условиях сварки следует определять дилатометрическим измерением. При этом на образце воспроизводят сварочный термический цикл и измеряют свободную температурную деформацию ёсв на незакрепленном образце. Текущее значение коэффициента а представляют как тангенс угла наклона касательной к дилатометрической кривой дг в/дТ. В тех случаях, когда полученная зависимость Вс Т) значительно отклоняется от прямолинейного закона, в расчет можно вводить среднее значение коэффициента ср = tg0 p, определяемое углом наклона прямой линии (рис. 11.6, кривая /). Если мгновенные значения а = дгс /дТ на стадиях нагрева и охлаждения существенно изменяются при изменении температуры, то целесообразно вводить в расчеты сварочных деформаций и напряжений переменные значения а, задавая функции а = а(Т) как для стадии нагрева, так и для стадии охлаждения. 4В  [c.413]

Как известно, шероховатость или чистота поверхности при механической обработке определяется в первую очередь прочностными свойствами обрабатываемого материала. При сварке плавлением воздействие термического цикла сварки вызывает в металле структурно-химические изменения, обус-ловливаюшие неоднородность прочностных свойств сварного соединения. Так, сварные соединения, выполненные из закаленных низколегированных сталей, характеризуются двумя основными участками неоднородности в зоне термического влияния (1 — разупрочненный участок, обусловленный сварочным нагревом стали до температуры Ас 2 - участок полной перекристаллизации, нагревающийся выше температуры конца фазового а—у превращения вплоть до температуры плавления). Регламентируемый уровень прочности сварных соединений из стали 09Г2С соответствует разупрочнению участка 1 на 11—13 % и упрочнению участка 2 на 8—10 %. Для стали 16ГМЮЧ соответственно 15—17 % и 10—13 %. В отдельных случаях относительное разупрочнение свариваемых сталей может превышать 40%.  [c.91]

Ж ные фазовые изменения. Термический цикл резки характеризуется большими скоростями нагрева до высоких температур и столь же большими скоростями охлаждения (рис. 8). В этом случае под действием теплового удара узкая зона металла нагревается до температур выше аустенитного превращения и частично до температуры плавления. При этом скорость нагрева при резке более чем в 2—3 раза превышает скорость нагрева, например при электродуговой сварке (380—400 град1сек в интервале 300—900°С). Под действием такого термического цикла в з.т.в. происходят фазовые изменения с образованием структур закалки. Последнее усугубляется наличием на кромке металла с повышенным содер-ж анием углерода и других элементов. Эти структурные изменения зависят не только от состава металла, но и от его толщины и режима резки. Даные, характеризующие влияние толщины и группы разрезаемой стали на глубину зоны температурного влияния, приведены в табл. 7.  [c.28]

Металл в зоне сварного соединения испытывает нагрев и последующее охлаждение. Изменение температуры металла во время сварки называется термическим Щ1КЧ0М сварки. Максимальная температура нагрева в разных участках соединения различна. В зоне термического влияния температура нагрева изменяется от температуры плавления металладо комнатной температуры. При этом в металле происходят различные структурные и фазовые превращения.  [c.18]


Смотреть страницы где упоминается термин Фазовые и структурные превращения в металлах при сварке : [c.294]   
Смотреть главы в:

Теория сварочных процессов  -> Фазовые и структурные превращения в металлах при сварке



ПОИСК



Превращение

Превращение структурное

Превращение фазовое

Сварка металла

Структурные и фазовые превращения

Фазовые н структурные превращения при сварке

Фазовые превращения при сварке



© 2025 Mash-xxl.info Реклама на сайте