Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварочные дуги с неплавящимся электродом

Сварочные дуги с неплавящимся электродом  [c.99]

Давление осевого плазменного потока вызывается электромагнитными силами, его величина пропорциональна квадрату "тока. Дуга с плавящимся электродом оказывает большее силовое воздействие на сварочную ванну, чем дуга с неплавящимся электродом. Сила давления от газового потока невелика и составляет около 1 % силы давления потока, вызываемого электромагнитными силами.  [c.21]


При горении дуги плавящийся электрод по мере его плавления необходимо непрерывно подавать в дугу (в зону сварки) и поддерживать по возможности постоянную длину дуги. Длиной дуги Ь называют расстояние между концом электрода и поверхностью кратера (углубления) в сварочной ванне (рис. 4). При горении дуги с неплавящимся электродом длина дуги с течением времени возрастает и в процессе сварки необходима корректировка.  [c.7]

При сварке с неплавящимся электродом сварочная дуга / (фиг. 17) возбуждается между свариваемым изделием 2 и вольфрамовым электродом 3, окруженным трубчатым наконечником, по которому непрерывно подается аргон или гелий, создающие вокруг ванны 4 и подаваемого в нее присадочного металла 5 сплошную оболочку 6, оттесняющую кислород и азот воздуха.  [c.213]

Для дуговой сварки алюминиевых сплавов в защитных газах применяют специальные установки однофазного и трехфазного токов. При сварке алюминиевых сплавов дуга, горящая с неплавящегося электрода в защитном газе, обладает особенностями. Горит она при низком напряжении, (/д = 10...20 В. Ее ВАХ имеет горизонтальный участок в большом диапазоне силы сварочного тока. При смене полярности, когда напряжение становится равным нулю, возможен обрыв дуги, что требует специальных мер по ее стабилизации. Ток дуги в один полупериод больше, чем в другой, происходит частичное его выпрямление, что обусловлено физическими свойствами тугоплавкой окисной пленки, которую алюминиевые сплавы имеют на своей поверхности. Выравнивание силы тока в оба полупериода (устранение постоянной составляющей тока) достигается включением в сварочную Цепь последовательно с обмоткой трансформатора батареи конденсаторов. Устойчивое горение дуги достигается, в частности, использованием крутопадающей ВАХ источника питания (рис. 56). Чем она круче, тем меньше изменение силы тока А/ при изменениях длины дуги, тем стабильнее будет гореть дуга.  [c.100]

Автоматические головки разделяют на два типа 1) головки с плавящимся электродом и 2) головки с неплавящимся электродом (угольным, вольфрамовым). Автоматические головки с плавящимся электродом разделяют на головки с регулируемой и постоянной скоростью подачи проволоки. Наибольшее применение получили система, основанная на свойстве саморегулирования сварочной дуги (автоматическая головка с постоянной скоростью подачи электродной проволоки) и система с регулируемым напряжением на дуге и скоростью подачи электродной проволоки.  [c.210]


Возможно зажигание дуги без короткого замыкания и отвода электрода с помощью высокочастотного электрического разряда через дуговой промежуток, обеспечивающего его первоначальную ионизацию. Для этого в сварочную цепь на короткое время подключают источник высокочастотного переменного тока высокого напряжения (осциллятор). Этот способ применяют для зажигания дуги при сварке неплавящимся электродом.  [c.185]

При сварке неплавящимся электродом на переменном токе сочетаются преимущества дуги на прямой и обратной полярностях. Однако асимметрия электрических свойств дуги, обусловленная ее меньшей электрической проводимостью при обратной полярности по сравнению с прямой, приводит к ряду нежелательных явлений. В результате выпрямляющей способности дуги появляется постоянная составляющая тока прямой полярности. В этих условиях дуга горит неустойчиво, ухудшается очистка поверхности сварочной ванны от тугоплавких оксидов и нарушается процесс формирования шва. Поэтому для питания дуги в аргоне переменным током при-  [c.196]

Деформацию изгиба (рис. 5.60, а) можно исключить предварительным обратным прогибом балки перед сваркой (рис. 5.60, б) рациональной последовательностью укладки швов относительно центра тяжести сечения сварной балки (рис. 5.60,6, в случае несимметричной двутавровой балки вначале сваривают швы I и 2, расположенные ближе к центру тяжести) термической (горячей) правкой путем нагрева зон, сокращение которых необходимо для исправления деформации заготовки, до температур термопластического состояния (рис. 5.60, г штриховкой показаны зоны нагрева). При правке заготовки нагревают газовым пла.менем или дугой с применением неплавящегося электрода. Разогретые зоны претерпевают пластическую деформацию сжатия, а после охлаждения — остаточное укорочение. Последнее обусловливает дополнительную деформацию сварной заготовки, противоположную но знаку первоначальной внешней сварочной деформации. Подобную деформацию можно также получить, если наложить в указанных зонах холостые сварные швы.  [c.252]

Для питания дуги на участке II с жесткой характеристикой применяют источники с падающей или пологопадающей характеристикой (ручная дуговая сварка, автоматическая под флюсом, сварка в защитных газах неплавящимся электродом). Режим горения дуги определяется точкой пересечения характеристик дуги б и источника тока I (рис. 5.4, б). Точка В соответствует режиму неустойчивого горения дуги, точка С - режиму устойчивого горения дуги (/св и f/д), точка А - режиму холостого хода в работе источника тока в период, когда дуга не горит и сварочная цепь разомкнута. Режим холостого хода характеризуется повышенным напряжением (60. .. 80 В). Точка D соответствует режиму короткого замыкания при зажигании дуги и ее замыкании каплями жидкого электродного металла. Короткое замыкание характеризуется малым напряжением, стремящимся к нулю, и повышенным, но ограниченным током.  [c.225]

При сварке неплавящимся электродом на переменном токе сочетаются преимущества дуги на прямой и обратной полярностях. Однако асимметрия электрических свойств дуги, обусловленная ее меньшей электрической проводимостью при обратной полярности по сравнению с прямой, приводит к ряду нежелательных явлений. В результате выпрямляющей способности дуги появляется постоянная составляющая тока прямой полярности. В этих условиях дуга горит неустойчиво, ухудшается очистка поверхности сварочной ванны от тугоплавких оксидов и нарушается процесс формирования шва. Поэтому для питания дуги в аргоне переменным током применяют специальные источники тока. В систему одних источников включают стабилизатор горения дуги - электронное устройство, подающее импульс дополнительного напряжения на дугу в полупериод  [c.236]


Сварочные дуги, используемые в технологических процессах сварки, классифицируют по ряду признаков. По составу материала электрода различают дугу с плавящимся и неплавящимся электродом по степени сжатия столба свободную и сжатую дугу по роду тока -дугу постоянного и дугу переменного тока по полярности постоянного тока - дугу прямой полярности источника питания дуги подключен к электроду, + - к изделию) и обратной полярности ( +  [c.85]

Плавящийся электрод применяют при аргонодуговой сварке алюминиевых сплавов толщиной более 4 мм. Электродную проволоку берут при этом диаметром 1,2 мм и выше. Дугу питают от источника постоянного тока с жесткой или пологопадающей характеристикой. Сварку ведут на обратной полярности, что обеспечивает хорошее разрушение окисной пленки на деталях за счет катодного распыления. Возбуждают дугу замыканием под током электродной проволоки на изделие. Автоматическую сварку плавящимся электродом ведут на подкладках с формирующей канавкой. Максимальный сварочный ток, на котором устойчиво горит дуга и обеспечивается струйный перенос электродного металла, 130 А. Расход аргона такой же, как и при сварке неплавящимся электродом (см. табл. 20), расстояние между нижним срезом сопла горелки и деталью должно быть 5... 15 мм.  [c.196]

Одним из высокопроизводительных способов аргонодуговой сварки толстолистового материала является сварка погруженной дугой, проводимой как плавящимся, так и неплавящимся электродом. Наиболее широко применяется сварка погруженным вольфрамовым электродом. При этом методе вольфрамовый электрод затачивают на конус с притуплением. Диаметр плоского конца электрода (притупления) порядка 2 мм. В процессе горения дуги по мере увеличения силы тоКа катодное пятно дуги покрывает всю площадь притупления. Столб дуги имеет четко выраженную цилиндрическую форму, и давление, оказываемое им на сварочную ванну, в этом случае максимально. Жидкий металл выдавливается из-под электрода, который опускают ниже поверхности свариваемого металла. Глубина погружения электрода определяется высотой столба жидкого металла, уравновешенного давлением дуги. Этим методом можно встык, без разделки кромок, за один проход сваривать стальные, алюминиевые или титановые детали толщиной 10 мм.  [c.466]

Устройство для плавного снижения сварочного тока позволяет предотвратить появление кратера шва при быстром гашении дуги в конце сварки. Это возможно при плавном уменьшении сварочного тока до нуля примерно за 5... 6 с. В установках для автоматизированной сварки неплавящимся электродом в среде защитных газов данный процесс осуществляется автоматически с помощью  [c.144]

Ручную дуговую сварку вольфрамовым электродом ведут на специально для этого разработанных установках типа УДГ. При других условиях питание дуги при сварке неплавящимся электродом может осуществляться от других источников переменного тока. Использование источников переменного тока связано с тем, что при сварке постоянным током обратной полярности допустим сварочный ток небольшой величины из-за возможного расплавления электрода, а при сварке постоянным током прямой полярности не происходит удаления окисной пленки с поверхности алюминия. Расход аргона составляет 6. .. 15 л/мин. При переходе на гелий расход газа увеличивается примерно в 2 раза. Напряжение дуги при сварке в аргоне 15. .. 20 В, а в гелии 25. .. 30 В. Рекомендуемые режимы сварки приведены в табл. 12.3.  [c.443]

Технологические признаки характер процесса сварки (непрерывный, импульсный, с колебаниями электрода) тип электрода (плавящийся, неплавящийся) и присадочного материала (проволока, пр>ток, металлическая крошка и др.) количество электродов и их взаимосвязь состояние сварочной ванны (свободное или принудительное формирование шва) способ защиты дуги и давление среды, в которой протекает процесс (сварка в защитных газах, под флюсом, без внешней защиты при нормальном или повышенном давлении, а также в вакууме) прочие факторы (например, действие гравитации, невесомость и др.).  [c.54]

Сварочная дуга в качестве статического датчика используется в системах АРНД для управления положением электрода вдоль его оси. Эти системы вначале были созданы для дуговой сварки неплавящимся электродом, при которой дуговой процесс отличается достаточно высокой стабильностью, благодаря чему измерение и регулирование может быть осуществлено сравнительно простыми средствами. С использованием таких систем реализуют многокоординатные следящие системы для дуговой сварки швов сложной формы, лежащих в одной плоскости с электродом.  [c.111]

При дуговой сварке других видов параметры дугового процесса имеют значительную случайную составляющую и выделение информации о положении поверхности изделия существенно усложняется. В ряде случаев для получения приемлемой точности оказывается необходимо применение интеграла измеряемого сигнала и методов, основанных на анализе случайных процессов. Следящие системы для наведения электрода на линию соединения, в которых в качестве датчика используется сварочная дуга, стали интенсивно развиваться только после появления микроэлектронной техники и необходимости создания средств адаптации для сварочных промышленных роботов, применительно к которым преимущества использования сварочной дуги в качестве датчика имеют решающее значение при выборе методов и Технических средств адаптации. В большинстве известных систем рассматриваемого типа для сварки плавящимся электродом в качестве информационного параметра используется сила сварочного тока. При сварке неплавящимся электродом с применением источника питания с крутопадающей характеристикой более информативным параметром оказывается напряжение на дуге.  [c.111]


Хорошие результаты дает также сварка деталей из алюминиевых сплавов неплавящимся вольфрамовым электродом в среде инертного газа аргона (аргоно-дуговая сварка). Присадочный материал при этом вводят в электрическую дугу, горящую между деталью и вольфрамовым электродом, как при газовой сварке. Сварка производится без флюса, так как аргон надежно защищает расплавленный металл "от окисления и способствует получению сварочного шва с высокой прочностью без пор и окислов. Для аргоно-дуговой сварки промышленность выпускает специальные установки типа УДАР-300, УДАР-500, УДГ-301 и УДГ-501.  [c.165]

Для ручной дуговой сварки на переменном токе с плавно-ступенчатым регулированием сварочного тока электродами различных марок как для переменного, так и постоянного тока, а также неплавящимся электродом для сварки алюминия и его сплавов в аргоне на строительно-монтажных площадках, в ремонтных мастерских предназначены устройства питания сварочной дуги Разряд-160 н Разряд-250 (рис. 13) с номинальным током соответственно 160 и 250 А. Разряд-160 отличается от Разряда-250 конструкцией трансформатора, сердечник первого состоит из двух ленточных магнитопроводов, а второго — из трех.  [c.42]

Пульсирующую сварочную дугу получают с помощью специальных устройств реле пульсации дуги, прерывателей тока, тиристорных коммутаторов. Источники питания для сварки пульсирующей дугой должны обеспечивать сварку как плавящимся, так и неплавящимся электродами, пульсацию электрических параметров дуги по требуемому режиму. Для этих целей могут служить специальные источники питания или сварочные преобразователи типа ПСО, пег, ПСУ с прерывателями и регуляторами тока. Специальные источники питания позволяют получать пульсирующую мощность дуги за счет управления параметрами сварочной цепи.  [c.199]

Согласно наиболее распространенной схеме теплота сварочной дуги непосредственно передается изделию через эффективное пятно дуги конвективными потоками плазмы вдоль столба дуги и радиационным излучением. Наиболее близко такой схеме соответствуют дуги сравнительно небольшой мощности при сварке покрытыми электродами с небольшим количеством шлакообра-зующих в покрытии, а также дуги с неплавящимся электродом, горящие в среде аргона. При сварке электродами с качественным покрытием либо под флюсом значительная часть теплоты ввод1гг-ся в изделие через присадочный материал, шлак или флюс, что приводит к существенно более сложному распределению теплового потока. Теплота, выделяемая в дуге, наиболее рационально используется при автоматической сварке.  [c.36]

Эти стали можно сваривать ручной и механизированной дуговой сваркой, а также другими способами, причем предпочтительны способы сварки с невысокой погонной энергией. Техника выбора режима такая же, как и для других коррозионно-стойких сталей. Благодаря высокому содержанию феррита швы обладают достаточной стойкостью против горячих трещин. При сварке плавлением используют электроды ЦЛ-11, ОЗЛ-7, ЦТ-15-1, НЖ-13, АНВ-36, проволоку Св 08Х21Н7ВТ, Св 03Х21Н10АГ5, флюсы АН-26, АИК-45МУ. При сварке деталей с толщиной кромок 16...20 мм рекомендуется обрабатывать границы шва с основным материалом сварочной дугой, горящей в аргоне с неплавящегося электрода. Такой местный нагрев с малой погонной энергией обеспечивает мелкозернистую ферритную структуру с аустенитными прослойками по границам зерен. Это повышает пластичность и коррозионную стойкость.  [c.187]

Для сварки неплавящимся электродом в среде защитных газов промышленностью выпускаются автоматы АДСВ (рис. УП.Ю), АДН и др. Конструкция механизмов подачи проволоки и перемещения аппарата у этих тракторов аналогична конструкции этих механизмов у тракторов, используемых для сварки плавящимся электродом. Особенность электрической схемы аппаратов с неплавящимся электродом заключается в зажигании дуги пробоем дугового промежутка высокочастотной дугой осциллятора и заварке кратера по окончании сварки за счет постепенного уменьшения силы сварочного тока.  [c.201]

Другим видом газовой защиты при сварке является использование камер с контролируемой атмосферой. В этом случае из некоторого объема вокруг сварочного пространства (обычно в специальной камере, в которую вводится свар ваемое шделие и весь необходимый для сварки инструмент) удаляется воздух до ( (Дания Н1 Г) одимого вак тч м --ии мГчем <, . >>.н яется газом или газовыми смесями такого состава, которьп удовлетворяет требованиям получения металла в сварных соединениях необходимого состава и свойств. И в этом случае сварка осуществляется сварочной дугой при неплавящемся или плавящемся электроде.  [c.209]

АП. -301 УПСР-300-3 В комплект установки входят станок с двумя сварочными головками, устройство зажатия и фиксации заготовки, источник питания В комплект установки входят сварочный выпрямитель ВД- 50 1 г - и.т фЯНЛеИ1 Я 1 Сварка токосъемных узлов Сварка плазменной дугой и неплавящимся электродом кор- рОз () ]По-ст 1 1кой Т0Л ЦИ- ней 1 — 5 мм  [c.79]

Сварку неплавящимся электродом ведут на постоянном токе прямой полярности. В этом случае дуга легко зажигается и горит устойчиво при напряжении 10—15 В. При обратной полярности возрастает напряжение дуги, уменьшается устойчивость ее горения и снижается сто " кость электрода. Эти особенности дуги обратной полярности делают ее непригодной для непосредственного применения в сварочном процессе. Однако дуга обратной полярности обладает одним важным технологическим свойством при ее действии с поверхности свариваемого металла удаляются оксиды. Одно из объяснений этого явления заключается в том, что поверхность металла бомбарди-  [c.195]

Источником теплоты при дуговой сварке служит электрическая дуга, которая горит между электродом и заготовкой. В зависимости от материала и числа электродов, а также способа включения электродов и заготовки в цепь электрического тока различают следующие виды дуговой сварки сварка нетавящимся (графитовым или вольфрамовым) электродом I дугой прямого действия 2 (рис. 5.1, а), при которой соединение выполняется путем расплавления только основного металла 3 либо с применением присадочного металла 4, сварка плавящимся (металлическим) электродом 1 дугой прямого действия 2 (рис. 5.1, б) с одновременным расплавлением основного металла 3 и электрода, который пополняет сварочную ванну жидким металлом сварка косвенной дугой 5 (рис. 5.1, в), горящей между двумя, как правило, неплавящимися электродами 7 при этом основной металл 3 нагревается и расплавляется теплотой столба дуги сварка трехфазной дугой 6 (рис. 5.1, г), при которой дуга горит между электродами 7,  [c.222]

В США фирмой Дженерал-электрик при изготовлении паропроводов в качестве основного метода соединения труб применялась автоматическая дуговая сварка в смеси газов 75 %Аг-25 %СОг в режиме постоянного тока и импульсно-дуговой частотой от 20. .. 100 до 1 ООО. .. 3000 Гц. Кольцевые швы неповоротных вертикальных стыков паропроводных труб выполнялись тонкими слоями толщиной 2,5. .. 3 мм одновременно четырьмя сварочными головками на "спуск" в узкую разделку кромок с использованием присадочной проволоки диаметром 0,8 мм. Фирма Аст-роаак Корпорейщн (США) применяет автоматы орбитального типа для аргонодуговой сварки неповоротных стыков паропроводов с использованием присадочной проволоки диаметром 0,5. .. 1,6 мм в режиме постоянного тока силой до 300 А с поперечным колебанием неплавящегося электрода и в режиме сварки плазменной дугой.  [c.278]


При ручной сварке (наплавке) подача электрода в зону дуги и передвижение его вдоль свариваемого соединения производятся вручную. В качестве основного оборудования для ручной дуговой сварки применяют рабочие места, инструмент и защитные приспособления. При механизированной сварке (наплавке) механизирована только подача электрода, а перемещение его вдоль линии сварочного соединения и некоторые другие операции выполняются вручную. Наиболее распространенным способом механизированной сварки является сварка тонкой электродной проволокой диаметром 2 мм и менее, которая подается в зону сварки по гибкому шлангу. В качестве основного оборудования при механизированной дуговой сварке (наплавке) применяют шланговые полуавтоматы с различными горелками (держателями), а также специальные типы полуавтоматов, в которых используются дополнительные устройства, например ручные механизмы передвижения дуги, прижимные механизмы в случае сварки электрозаклепками и т. п. Полуавтоматы для дуговой сварки применяются как плавящимся, так и неплавящимся электродом.  [c.52]

Для сварки в любом пространственном положении применяют также аппараты с непла-вящимся электродом с присадкой или без нее. Особенностями сварки неплавящимся электродом являются возможность независимого управления мощностью дуги (отдельно силой тока и длиной, а следовательно, напряжением) и количеством присадочного материала инертная защита сварочной ванны и, при сварке током обратной полярности или переменным, ее катодная очистка.  [c.78]

Особенностью сварки неплавящимся электродом является отсутствие самовыравнива-ния (саморегулирования) энергетического состояния дуги. Для устранения возникающих при изменении длины дуги ошибок по напряжению MJjyW току Д/д используют регуляторы типа АРНД с воздействием на перемещение сварочной горелки или электрода с обратной связью по напряжению дуги или расстоянию между электродом и поверхностью сварочной ванны. В последнем случае (для малоамперных дуг) в качестве датчиков цепи обратной связи применяются струйные пневматические либо оптические, фотометрические, обеспечивающие точность измерения расстояний между сварочной горелкой и изделием примерно  [c.101]

Также в ИЭС им. Е. О. Патона разработано устройство УПД-3, обеспечивающее как первоначальное возбуждение сварочной или дежурной дуги постоянного тока, так и стабилизацию процесса горения дуги переменного тока. Устройство УПД-3 вырабатывает высоковольтные импульсы, подаваемые в дуговой промежуток,, и включается последовательно в цепь дежурной дуги с максимальным током 315 А, в сварочную цепь постоянного тока или переменного тока до 1000 А при естественном воздушном охлаждении. Устройство можно применять при сварке алюминия и его сплавов неплавящимся электродом в аргоне. УПД-3 значительно расширяет возможности сварочных трансформаторов, обеспечивая высокую устойчивость дуги переменного тока. Создан также блок коммутации 13РП-100-009, служащий для полуавтоматического включения УПД-3 в начале процесса сварки и автоматического его включения при перерывах в сварке длительностью более 1 с, необходимых для смены электрода, перемещения  [c.41]


Смотреть страницы где упоминается термин Сварочные дуги с неплавящимся электродом : [c.184]    [c.196]    [c.235]    [c.87]    [c.194]    [c.197]    [c.326]    [c.68]    [c.26]    [c.100]   
Смотреть главы в:

Теория сварочных процессов  -> Сварочные дуги с неплавящимся электродом

Теоретические основы сварки  -> Сварочные дуги с неплавящимся электродом



ПОИСК



Вес дуги

Сварочная дуга

Электроды неплавящиеся



© 2025 Mash-xxl.info Реклама на сайте