Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поперечные колебания призматических стержней

ПОПЕРЕЧНЫЕ КОЛЕБАНИЯ ПРИЗМАТИЧЕСКИХ СТЕРЖНЕЙ  [c.571]

Поперечные колебания призматических стержней  [c.634]

Как хорошо известно, классические уравнения поперечного колебания призматических стержней не учитывают геометрию поперечного сечения, поэтому соответствующие слагаемые в уравнении (11.77) позволяют учесть влияние геометрической дисперсии на поперечное колебание стержня прямоугольного сечения и при решении конкретных прикладных задач можно учесть вклад этих дополнительных членов в уравнения движения.  [c.248]


При составлении соответствующего дифференциального уравнения учитываются силы инерции распределенной массы и добавка изгибающего момента от продольной силы. Применив метод Фурье разделения переменных, дифференциальное уравнение поперечных колебаний призматического стержня с учетом продольной сжимающей силы в амплитудном состоянии примет вид (х) + Fv"(x) - o mv x) = qy (х)  [c.198]

Тимошенко С. П. К учету сдвига в дифференциальном уравнении поперечных колебаний призматических стержней. —В кн, Тимошенко С. П.  [c.277]

Филиппов А. П. Поперечные колебания призматических стержней и двухстоечных рам с учетом сил перерезывания. Сообщения Института математики и механики при Харьковском университете. Т. 7. Серия IV. 1933.  [c.521]

Рассмотрим теперь поперечные колебания призматического стержня (рис. 5.13, а) в плоскости ху, которая является плоскостью симметрии для его поперечных сечений. Так же, как и выше, в случае колебаний растянутой нити через у обозначим поперечное перемещение малого элемента стержня, расположенного на расстоянии л от левого конца последнего. Если для нити жесткость при изгибе Е1 предполагалась малой, в случае стержня эту жесткость следует учитывать. На рис. 5.13, б показан малый элемент стержня длиной йх, а также внутренние и внешние силы, действующие на него. На этом рисунке знаки поперечной силы V и изгибающего момента М взяты в соответствии с принятым в теории изгиба стержней правилом . При поперечных колебаниях стержней условие динамического равновесия сил, действующих в направлении оси у, имеет вид  [c.372]

Соотношения (5.88)—(5.90) определяют условие ортогональности для задачи о поперечных колебаниях призматического стержня.  [c.375]

Это уравнение представляет собой дифференциальное уравнение для поперечных колебаний призматических стержней, в правой части которого второе слагаемое учитывает влияние инерции вращения.  [c.388]

Исключая функцию f> из уравнений (е) и (з), находим более полное уравнение поперечных колебаний призматических стержней  [c.389]

СВОБОДНЫЕ ПОПЕРЕЧНЫЕ КОЛЕБАНИЯ ПРИЗМАТИЧЕСКИХ СТЕРЖНЕЙ 315  [c.315]

Для нашего дальнейшего изучения поперечных колебаний призматических стержней целесообразно рассмотреть некоторые общие свойства нормальных функций.  [c.316]

Продольные колебания стержней. Перейдем к рассмотрению колебаний призматических стержней, обладающих в отличие от струны значительной поперечной жесткостью. Прежде всего напомним, что различают три типа колебаний продольные, поперечные и крутильные.  [c.569]


Следовательно, уравнение (11.44) лишь в первом приближении описывает поперечные колебания стержня круглого сечения, причем оно по виду совпадает с классическим обобщенным уравнением поперечных колебаний призматического упругого стержня при fi t)=0. Полагая в приближенных уравнениях колебаний вязко-упругого стержня, полученных в настоящем разделе, ядра вязко-упругих операторов равными нулю, получим уравнения колебания упругого круглого стержня.  [c.237]

Уравнение (5.54) и формула (5.55) совпадут по форме с уравнением (5.1) и формулой (5.2), если в последних величины и, а п Е заменить соответственно на 9,, 6дИ G. Поэтому все полученные результаты для задачи о продольных колебаниях призматических стержней можно распространить и на задачи о крутильных колебаниях валов кругового поперечного сечения путем простой замены обозначений. Например, в случае вала с незакрепленными концами частоты и нормальные функции для соответствующих собственных форм крутильных колебаний имеют вид  [c.360]

Барре де Сен-Венан (1797—1886), член Парижской академии наук, один из создателей современной теории упругости. Разработал точную теорию кручения и изгиба призматических стержней произвольного поперечного сечения. Известен также работами в области пластических деформаций, теории колебаний. Сформулировал принцип, существенно упрощающий постановку задач теории упругости и сопротивления материалов.  [c.96]

Под термином вынужденные или возбужденные колебания следует понимать такие колебания, которые возникают по истечении определенного времени от начала наблюдения при действии переменной внешней нагрузки, которая предполагается перпендикулярной к оси стержня и в целях упрощения изменяющейся по гармоническому закону. При этом мы обычно вводим понятие так называемого исчезающего трения, т. е. предполагаем, что под действием трения исчезают колебания, вызванные соответствующими условиями в начале наших наблюдений, после чего трение исчезает и не оказывает никакого влияния на вынужденные колебания. В качестве примера рассмотрим случай вынужденных поперечных колебаний свободно опертой призматической балки, которые выражаются следующим дифференциальным уравнением  [c.95]

Прежде всего укажем, на то, что даже не меняющаяся по времени осевая сила, оказывает влияние на поперечные и крутильные колебания стержня. В качестве примера приведем приближенное вычисление частоты собственных крутильных колебаний призматического вала (фиг. 41, а), шарнирно опертого по концам, с массой т, сконцентрированной посредине его длины и сжимаемого осевой силой S.  [c.114]

Б. В качестве первого примера исследуем колебания груза Q, подвешенного к нижнему концу призматического стержня длиной I, площадью поперечного сечения F и удельным весом у (рис. 416). Выведенный из положения равновесия и затем предоставленный самому себе груз начнет совершать продольные колебания около положения равновесия. Составим выражения для U и Т колеблющейся системы груз — стержень.  [c.506]

Техническая теория крутильных колебаний стержней. Для стержня с прямолинейной осью, центр тяжести поперечного сечения которого совпадаете центром изгиба (выполнение этого условия гарантирует существование чисто крутильных колебаний), используют гипотезы статической задачи о чистом кручении призматических стержней, основной из которых является гипотеза плоских сечений.  [c.147]

Поперечные колебания прямого призматического стержня. Плоскость колебаний Oxz, ось Ох направлена вдоль стержня и проходит через центры тяжести поперечных сечений, оси Оу и Oz - главные. Принимается гипотеза плоских сечений - поперечные сечения при деформации остаются плоским-и и перпендикулярными к деформированной оси стержня нормальные напряжения на площадках, параллельных оси Ох, пренебрежимо малы. Растяжением оси пренебрегают. Потенциальная энергия деформации и кинетическая энергия связаны с прогибом стержня И следующим образом  [c.331]


Точное решение задачи о колебаниях балки в том случае, когда массой передвигающегося груза можно пренебречь, дал А. Н. Крылов Решение его, основанное на интегрировании дифференциального уравнения для поперечных колебаний призматического стержня, совпадает с приведенным выше решением (см. (15) 12), построенным на пользовании нормальными координатами. Дополнительный прогиб, обусловленный колебаниями балки, определеляется, как мы видели, величиной a=al/bn. Значения а и соответствующие им периоды Т основных колебаний для мостов различных пролетов приведены в следующей таблице  [c.174]

Вопрос о продольных колебаниях, появляющихся при ударе в призматических брусках, был разрешен еш,е Луи Мари Навье ). Колебания брусков при поперечном ударе подробно были рассмотрены Барре Сен-Венаном ). Оба эти исследователя исходили из предположения, что в момент соприкасания ударяюш,ее тело сообщает свою скорость лишь тому сечению бруска, где происходит удар, и так как действие удара в первый момент распространяется лишь на небольшую массу, то заметного изменения скорости не происходит, она начинает убывать лишь по мере распространения действия удара. Допустив, кроме того, что ударяющий груз находится в соприкасании с балкой по крайней мере в продолжение половины периода основных колебаний ), Сен-Венан привел задачу о действии удара на балку к вопросу о поперечных колебаниях призматического стержня с прикрепленным к нему грузом. Решение для этого случая получается в виде бесконечных рядов, но если ограничиться лишь первыми членами этих рядов, то мы придем к ранее полученному элементарным путем второму приближению (2). Многочисленные опыты, произведенные над продольным ударом призматических стержней, не подтвердили результатов Сен-Венана, и более подробное исследование деформации у места удара ) показало, что местные деформации имеют весьма существенное влияние на продолжительность удара.  [c.222]

Заметим здесь, что наше заключение относительно вынужденных колебаний бесконечно длинного стержня на упругом основании может быть получено и из основного уравнения для поперечных колебаний призматических стержней. Уравнение это при наличии упругого основания напишется так  [c.364]

Четвертая глава содержит теорию колебаний упругих тел. Рассмотрены задачи о продольных, крутильных и поперечных колебаниях призматических стержней, о колебаниях стержней переменного поперечного сечения, о колебаниях мостов, турбиниых лопаток и изложена теория колебаний круговых колец, мембран, пластин и турбинных дисков.  [c.6]

В трактате Юнга единственное описание результатов эксперимента, касающихся высоты модуля, содержалось в Комментарии, следующем за теоремой о поперечных колебаниях призматических и цилиндрических стержней (см. Young [1807,1], 398, т. II, стр. 84). При рассмотрении этой задачи Юнг использует разложение искомой функции в ряд при решении уравнения Бернулли — Эйлера для балок. Это позволило ему вывести зависимость между высотой модуля и частотой колебаний для консольных и свободно опертых балок. Приводим указанное описание.  [c.255]

Большое практическое значение имеют также поперечные колебания валов и балок. Простейшие случаи колебаний призматических стержней были исследованы еще в XVIII веке, причем решения их входили в состав сочинений по акустике. Использование этих решений в применении к балкам технического назначения, поперечные размеры которых не малы в сравнении с пролетом, или же в случаях, когда недопустимо пренебрегать сравнительно более высокими частотами, вызвало необходимость в выводе более полного дифференциального уравнения, учитывающего влияние на прогиб также и касательных напряжений ). Весьма часто размеры поперечного сечения меняются вдоль пролета балки. Строгий анализ колебаний таких балок выполним лишь в простейших случаях ), обычно же приходится прибегать к одному из приближенных методов интегрирования дифференциальных уравнений. Эти методы приобрели популярность в связи с потребностями расчета частот поперечных колебаний в судах ). Основываются они обычно  [c.501]

Изложенный в этом параграфе подход может быть распространен и на более сложный случай, когда массы и пружины прикрепляют к обоим концам стержня. В этом случае, как следует из выражения (г), нормальные функции будут содержать оба ненулевых слагаемых, поэтому частотное уравнение будет иметь больше членов. Кроме того, соотношения ортогональности и нормированности будут содержать члены с массами и жесткостями пружин, прикрепленными к обоим концам стержня, но при этом начальные условия, записанные в нормальных координатах, можно представить в виде, когда они будут определяться только влиянием прикрепленных на концах стержня масс. В качестве упражнения предлагаем читателю получить эти более сложные (но и более общие) выражения, описывающие продольные колебания призматических стержней. Аналогичный с точки зрения математической формулировки случай вала с закрепленными на концах дисками будет обсужден в п. 5.7, а случай предварительно растянутой нити с дополнительными пружинами, препятствующими поперечным перемещениям, будет рассмотрен в п. 5.8.  [c.352]

До работ Дюло 1812 г. и Дюпена 1811 г. все экспериментальные определения -модуля Джордано Риккати, Хладни, Юнгом и Био, а также модуля [х Кулоном были динамическими, основанными на определении частоты колебаний или, в единственном случае, Био, на измерении скорости распространения волн. Эксперименты Дюло и Дюпена были первыми квазистатическими в области подлинно малых деформаций. Исчерпывающее исследование Дюло призматических стержней с различной формой поперечного сечения, подвергнутых нагружению, изменяющемуся в широких пределах, представляет собой веху не только в историческом развитии экспериментальной механики твердого тела, но также в теоретическом обосновании линейной теории упругости, которая стала быстро развиваться в последующие годы.  [c.278]



Смотреть страницы где упоминается термин Поперечные колебания призматических стержней : [c.310]    [c.373]    [c.448]    [c.320]    [c.289]    [c.373]    [c.116]    [c.111]    [c.135]    [c.19]   
Смотреть главы в:

Сопротивление материалов  -> Поперечные колебания призматических стержней

Сопротивление материалов 1986  -> Поперечные колебания призматических стержней

Прочность и колебания элементов конструкций  -> Поперечные колебания призматических стержней

Колебания в инженерном деле  -> Поперечные колебания призматических стержней



ПОИСК



Колебания поперечные

Призматические стержни поперечные

Свободные поперечные колебания призматических стержней

Стержень призматический

Стержни Колебания поперечные

Стержни — Стержни призматические



© 2025 Mash-xxl.info Реклама на сайте