Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон Гука обобщенный для изотропного тела

До сих пор напряженное и деформированное состояния рассматривались независимо друг от друга и не связывались со свойствами материала. Однако между компонентами напряженного состояния, с одной стороны, и деформированного, — с другой, существует определенная зависимость. В пределах малых деформаций эта зависимость я1 ляется линейной и носит название обобщенного закона Гука. Наиболее простую форму обобщенный закон Гука принимает для изотропного тела. В этом случае коэффициенты пропорциональности между компонентами напряженного и деформированного состояний не зависят от ориентации осей в точке.  [c.252]


Формулы (6.29) выражают обобщенный закон Гука для изотропного тела, т, е. зависимость между линейными дес]юрмациями и главными напряжениями в общем случае трехосного напряженного состояния. Заметим, что сжимающие напряжения подставляют в эти формулы со знаком минус . Из формул (6.29) легко получить формулу закона Гука для плоского напряженного состояния. Например, для случая 02 = О  [c.177]

Полученные соотношения (7.15) — (7.17) являются аналитическим выражением обобщенного закона Гука для изотропного тела.  [c.254]

Используя обобщенный закон Гука для изотропного тела, получить закон упругого изменения объема и подсчитать относительное изменение объема для стального образца при растяжении, если 0ц = 21О МПа, == = 2,1-105 МПа, ц = 0,3.  [c.129]

Обобщенный закон Гука для изотропного тела записывают в следующем виде  [c.124]

Эти формулы, выражают обобщенный закон Гука для изотропного тела.  [c.68]

Формула (4.56), где р= (3A + 2 j,)a, выражает обобщенный закон Гука для изотропного тела. На основании гипотезы Неймана компоненты тензора полной деформации, входящие в формулы (4.56), определяются при помощи перемещений формулами (3.26).  [c.71]

В данном параграфе первые три уравнения обобщенного закона Гука для изотропного тела выводятся исходя из картины деформации образцов, изготовленных из изотропного материала, наблюдаемой в опыте с такими образцами. Ниже приводятся  [c.495]

Напомним, что ц О. Последние три уравнения обобщенного закона Гука для изотропного- тела рассматриваются в 7.3, где используется еще один экспериментальный факт.  [c.496]

Уравнения (7.12) и (7.21) в совокупности изображают обобщенный закон Гука для изотропного тела  [c.502]

Если теперь воспользоваться формулами Грина (15.49), то получим обобщенный закон Гука для изотропного тела в следующей форме  [c.479]

Основной зависимостью классической теории упругости является обобщенный закон Гука, гласящий, что для изотропного тела компоненты тензора деформаций пропорциональны компонентам тензора напряжений. Так, для направления л справедливы равенства (при условии, что направления х я у перпендикулярны)  [c.10]

Тогда обобщенный закон Гука для изотропного тела в матричной записи примет вид, формально аналогичный закону Гука для одноосного растяжения или сжатия (1.3)  [c.8]


Важнейшей особенностью обобщенного закона Гука для изотропного тела является то обстоятельство, что матрица податливостей (1.7) инвариантна по отношению к выбору системы координат и формируется с использованием только двух независимых констант, полностью определяющих упругие свойства изотропного тела.г Кроме того, при сложном напряженном состоянии изотропного тела относительные удлинения S не зависят от касательных напряжений %ij, но связаны со всеми нормальными компонентами напряжений о , в то время как углы сдвига 7 , зависят лишь от соответствующих касательных напряжений т, . Поэтому для упругого изотропного тела главные оси напряженного состояния всегда совпадают с главными осями деформированного состояния.  [c.8]

В третьей группе шести уравнений формулируется закон состояния линейно-упругого тела. Для изотропного тела и в изотермическом или адиабатическом процессах этот закон —обобщенный закон Гука — записывается в форме  [c.124]

Физические уравнения теории упругости для изотропного тела. Обобщенный закон Гука  [c.194]

Составим аналитическое выражение обобщенного закона Гука, справедливого для идеально упругого изотропного тела. Для этого воспользуемся принципом независимости действия сил. Рассмотрим раздельно силы, возникающие на гранях элементарного параллелепипеда (рис. 10.1). При малых деформациях, действие касательных напряжений вызывает только формоизменение, а от действия нормальных напряжений происходит изменение линейных размеров вьщеленного элемента. Учитывая данное обстоятельство, для трех угловых деформаций получаем  [c.195]

Обобщенный закон Гука для изотропного тела записывается в следующей форме  [c.90]

Для изотропных тел соотношения обобщенного закона Гука известны из курса сопротивления материалов. В принятых обозначениях компонентов тензоров напряжений и деформаций они следующие  [c.43]

Приведенные в первой главе формулы и уравнения справедливы для любой сплошной среды, независимо от того, является она упругой, пластической или находится в любом другом физическом состоянии. Для различных физических состояний сплошной среды физические уравнения различны. Рассмотрим среды или тела, для которых зависимости между деформациями и напряжениями носят линейный характер, т. е. подчиняются обобщенному закону Гука. По упругим свойствам тела разделяются, с одной стороны, на однородные и неоднородные, а с другой — на изотропные и анизотропные. Тела, в которых упругие свойства во всех точках одинаковы, называются однородными, а тела с различными упругими свойствами в различных точках тела — неоднородными. Неоднородность непрерывная, когда упругие свойства тела от точки к точке изменяются непрерывно, и дискретная, когда упругие свойства тела от точки к точке испытывают разрывы или скачки. Тела, упругие свойства которых во всех направлениях, проведенных через данную точку, одинаковы, называют изотропными, а тела, упругие свойства которых во всех направлениях, проведенных через данную точку, различны,— анизотропными. В зависимости от структуры тело может быть изотропным или анизотропным и одновременно однородным или неоднородным [91]. В случае однородного упругого тела, обладающего анизотропией общего вида, зависимость между компонентами тензора напряжений и тензора деформаций в точке линейная  [c.68]

Формулы (4.7) И (4.7 ), определяющие относительные сдвиги, совместно с формулами (3.27), определяющими относительные линейные деформации, выражают так называемый обобщенный закон Гука для изотропного тела при объемном напряженном состоянии, линейно связывающий деформации и напряжения.  [c.106]


С учетом поперечной деформации (2.5) обобщенный закон Гука для изотропного тела выглядит следующим образом  [c.143]

Для линейно-упругих изотропных тел физическими уравнениями являются соотношения обобщенного закона Гука, известные из курса сопротивления материалов  [c.37]

Действуя оператором ДД на обе части каждой из формул обобщенного закона Гука для изотропного и однородного тела и учитывая, что относительная объемная деформация есть гармоническая функция, а Uj суть бигармонические функции, приходим к выводу, что компоненты напряжения также суть бигармонические функции.  [c.77]

ОБОБЩЕННЫЙ ЗАКОН ГУКА ДЛЯ ОДНОРОДНОГО ИЗОТРОПНОГО ТЕЛА  [c.60]

В этой главе рассматриваются задачи линейной теории упругости, выводы которой справедливы для тела однородного и изотропного, у которого между компонентами деформации и компонентами напряжений существует наиболее простая линейная связь (обобщенный закон Гука), а самые деформации предполагаются малыми, т. е. такими, когда компоненты деформации (относительные удлинения, относительные сдвиги) пренебрежимо малы по сравнению с единицей.  [c.50]

В простейшем случае для изотропного линейно-упругого тела эти уравнения (обобщенный закон Гука) записываются в форме  [c.51]

Обобщенный закон Гука для изотропного и анизотропного тела  [c.38]

Уравнения обобщенного закона Гука для трехосного растяжения (сжатия) изотропного тела )  [c.495]

Задача теории упругости неоднородного тела формулируется и решается аналогично задаче теории упругости однородного изотропного или анизотропного тела. Различие между ними состоит лишь в том, что в физических уравнениях (законе упругости) механические характеристики являются заданными непрерывными функциями координат. Здесь необходимо еще раз подчеркнуть, что при этом деформации тела считаются малыми и предполагается выполнение обобщенного закона Гука. Очевидно, что в случае неоднородного тела остаются справедливыми общие уравнения механики сплошной среды соотношения Коши между деформациями и перемещениями и т. д. Подробное изложение теории напряжений и деформаций приводится в многочисленных книгах [11, 100, 138 и др.], поэтому ниже они даются без вывода в прямоугольной системе координат х, у, z) в объеме, необходимом для дальнейшего изложения. Эти же уравнения в других системах координат (цилиндрической, сферической) можно найти в указанных выше и других изданиях.  [c.32]

Связь между напряжениями и деформациями. Для изотропного упругого тела при малых деформациях обобщенный закон Гука устанавливает линейные соотношения между компонентами деформации и компонентами напряжений  [c.38]

Деформированное состояние тела является неравномерным и меняется от точки к точке. Оно полностью определяется шестью компонентами деформаций тремя относительными линейными деформациями е ., е е. и тремя угловыми деформациями 7 . , Y ,,. Для изотропных материалов при малых деформациях в упругой стадии связь между деформациями и напряжениями устанавливается обобщенным законом Гука  [c.405]

Классическая теория упругости основана на обобщении закона Гука, который вначале был сформулирован для пружины или пружинящего тела . Так называемый обобщенный закон Гука устанавливает, что в каждой точке линейно-упругого трехмерного тела шесть компонент тензора напряжений = ji линейно связаны с шестью компонентами тензора деформаций = e . Постоянные, связывающие компоненты напряжений и деформаций, характеризуют упругие свойства тела. Пока предположим, что эти свойства не зависят как от положения, так и от ориентации, т. е. будем считать, что тело однородно и изотропно. Некоторые аспекты линейной теории упругости для однородных анизотропных тел будут рассмотрены в дальнейшем.  [c.23]

Вывести закон упругого упрочнения ai = Eei, используя выражения для интенсивностей напряжений и деформаций и обобщенный закон Гука для изотропного тела. Указать пределы применимости этого закона, используя критерий пластичности Мнзеса.  [c.130]

Рещая (4.35) относительно компонентов тензора деформаций fiftr и учитывая две первые формулы (4.48), мы получим обобщенный закон Гука для изотропного тела.  [c.71]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]


Обобщенный закон Гука записывается относительно просто (25) для изотропного тела. Однако металлы имеют кристаллическую структуру и являются телами анизотропными. В частности, их упругие свойства в разных кристаллографических направлениях неодинаковы. Это легко понять, если учесть хотя бы разное расстояние между соседними атомами в разных кристаллолрафиче-ских направлениях. Чем меньше это расстояние, тем  [c.29]

Конкретизируем выражение doijldT для изотропного линейноупругого тела. В этом случае связь между объемной деформацией гу = Зео и средним напряжением Стц, а также между компонентами eij и Sij соответственно девиаторов деформации и напряжений принимают линейной. Тогда с учетом (1.9) и (1.12) для полной деформации можно записать одну из форм обобщенного закона Гука  [c.17]


Смотреть страницы где упоминается термин Закон Гука обобщенный для изотропного тела : [c.52]    [c.521]    [c.547]    [c.36]    [c.10]    [c.496]   
Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.17 , c.31 , c.43 , c.45 , c.91 , c.341 , c.479 , c.517 , c.522 ]



ПОИСК



Гука обобщенный

Гука)

Закон Гука

Закон Гука (см. Гука закон)

Закон Гука для изотропных тел

Закон Гука обобщенный

Закон обобщенный

Изотропность

Обобщенный закон Гука для изотропного и анизотропного тела

Обобщенный закон Гука для однородного изотропного тела

Связь между тензорами напряжения и деформации в изотропном упругом теле (обобщённый закон Гука)

Тело изотропное,

Уравнения обобщенного закона Гука для трехосного растяжения (сжатия) изотропного тела

Физические уравнения теории упругости для изотропного тела. Обобщенный закон Гука



© 2025 Mash-xxl.info Реклама на сайте