Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы автоматизированного проектирования и изготовления

СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ И ИЗГОТОВЛЕНИЯ  [c.143]

Связь между функциональными подсистемами внутри КИПР-ЕС осуществляется посредством оперативных баз данных (БД) или архивов. Это позволяет разрабатывать новые подсистемы и через выход на БД общего назначения, применяемые в САПР конкретных предприятий, обеспечивает связь КИПР-ЕС с другими системами в области автоматизированного проектирования и изготовления.  [c.294]

Рис. 4.3. Схема функционирования комплексной автоматизированной системы проектирования и изготовления деталей типа тел вращения. Рис. 4.3. Схема функционирования комплексной <a href="/info/3560">автоматизированной системы проектирования</a> и <a href="/info/533276">изготовления деталей</a> типа тел вращения.

Если вы собираетесь заниматься автоматизированным проектированием или САПР либо проявляете к ним интерес, необходимо представлять разницу между системами и их компонентами — подсистемами. Подсистемы на уровне формализации решаемых задач — это отдельные единицы, основные функции которых — автоматизация отдельных участков наиболее трудоемких процессов проектирования, т. е. ввода и вывода информации, изготовления документации и т. д. Подсистемы на уровне системы автоматизированного проектирования, рассматриваемой на данном этапе,— это сложные комплексы проектирования, направленные на автоматизацию проектирования отдельных узлов сложных изделий. Например, если объектом проектирования является самолет, то подсистемами САПР будут подсистема проектирования крыльев, подсистема проектирования фюзеляжа, подсистема проектирования хвостовой части, подсистема проектирования системы жизнеобеспечения и другие если объект проектирования —автомобиль, то подсистемами САПР могут быть подсистема проектирования передних и задних мостов, подсистема проектирования кабины и т. д.  [c.17]

Первый и второй уровни в значительной мере схожи между собой. Их общее название — трехмерные системы. Проектирование происходит на уровне твердотельных моделей с привлечением мощных конструкторско-технологических библиотек, с использованием современного математического аппарата для проведения необходимых расчетов. Кроме того, эти системы позволяют с помощью средств анимации имитировать перемещение в пространстве рабочих органов изделия (например, манипуляторов робота). Они отслеживают траекторию движения инструмента при разработке и контроле технологического процесса изготовления спроектированного изделия. Все это делает трехмерное моделирование неотъемлемой частью совместной работы САПР/АСТПП (Системы Автоматизированного ПРоектирования/Автоматизированные Системы Технологической Подготовки Производства).  [c.10]

В предлагаемой книге сделана попытка переработать и систематизировать известный методический материал и на этой основе разработать методики определения оптимальных параметров конструкции. Для решения задач проектирования проведен анализ условий оптимальности тонкостенных конструкций и разработаны алгоритмы определения оптимальных параметров для различных видов оболочек и схем нагружения. Для нахождения правильного конструктивного решения, обеспечивающего минимальную массу, необходимо знать, как и в какой степени те или иные параметры и технология изготовления влияют на прочность, а также представлять себе поведение конструкции при разрушении. Предлагаемая книга позволяет решить эти вопросы наиболее простым способом. Разработанные алгоритмы дают возможность включить полученные решения в комплексную задачу определения оптимальных параметров изделия в целом в системе автоматизированного проектирования.  [c.3]


Автоматизация конструирования. Усложнение изделий машиностроения потребовало от разработчиков изделий использования новых методов проектирования. Это связано, во-первых, с тем, что требовалось сокращение сроков проектирования изделий, что было вызвано зависимостью научно-технического прогресса от развития машиностроения, во-вторых, необходимо было повысить производительность труда конструктора, так как уровень сложности изделий стал приближаться к границе, за которой эффективность труда человека-проектировщика начинает падать. Оказалось, что технические требования к изделию уже не могут быть обеспечены без интенсивного использования ЭВМ в процессе проектирования и изготовления новых изделий. Таким образом, возникла новая инженерная наука — проектирование изделий с помощью ЭВМ, результаты которой сегодня воплощаются в виде системы автоматизированного проектирования (САПР).  [c.118]

Разработка технологических процессов механических соединений (заклепочных и болтовых) в системах автоматизированного проектирования практически сводится к выявлению номенклатуры применяемого оборудования и оснастки, разработке маршрута постановки силовых точек и оценке трудоемкости выполнения операций и всего технологического процесса. Такое внешне типовое решение определяется однозначно установившимся набором технологических операций - позиционирование оборудования, сжатие пакета, сверление, разделка отверстия (если необходимо), установка силового элемента (заклепки или болта), силовое замыкание (расклепывание или навинчивание гайки), зачистка (если необходимо). Здесь выделяется два направления - проектирование соединений заклепочных и болтовых, каждое из которых представляет собой серьезную научную проблему, связанную с оценкой долговечности конструкций и минимизацией производственных затрат на изготовление этих конструкций.  [c.397]

Системы автоматизированного проектирования (САПР) в технологической подготовке холодноштамповочного производства (ТП ХШП) дают возможность проектировать технологические процессы изготовления листовых деталей, решать сложные задачи по выбору оптимального варианта раскроя рулонного материала, листов и полос на прямоугольные и фигурные заготовки. Для выбора рационального варианта технологической оснастки, поиска подходящих штампов из числа тех, что были спроектированы и изготовлены ранее, разработаны соответствующие программы.  [c.391]

Обоснованное применение СП позволяет получать высокие технике-экономические показатели. Трудоемкость и длительность цикла технологической подготовки производства, себестоимость продукции можно уменьшить за счет применения стандартных систем СП, сократив трудоемкость, сроки и затраты на проектирование и изготовление СП. В условиях серийного машиностроения выгодны системы УСП, СРП, УНП, СНП и другие СП многократного применения. Производительность труда значительно возрастает (на десятки --сотни процентов) за счет применения СП быстродействующих с механизированным приводом, многоместных, автоматизированных, предназначенных для работы в сочетании с автооператором или технологическим роботом.  [c.66]

Уже теперь разрабатывают системы автоматизированного проектирования (САПР). Под этим понятием подразумевается применение ЭВМ для автоматизации проектирования как отдельных элементов и деталей, так и конструкций, подсистем и систем. Процесс проектирования с использованием ЭВМ может быть и не связан с изготовлением чертежей и применением графических устройств. В общем, результатом такого проектирования могут быть и чертежи, и текстовая документация (расчетно-пояснительные записки, отчеты и пр.), и технологическая документация (технологические или операционные карты и т. д.), а также как 1е-либо программоносители с записью программы для машин с ЧПУ. Таким образом, основой автоматизированного проектирования является система расчетов, позволяющая наиболее целесообразно выбрать конструктивные или иные производственные решения.  [c.557]

В нашей стране разработаны и эксплуатируются системы автоматизированного проектирования микросхем с помощью ЭВМ, с применением устройств отображения информации на электронно-лучевых индикаторах (ЭЛИ), Такие системы позволяют производить расчеты, разрабатывать топологию и получать необходимые технологические и конструкторские документы непосредственно от ЭВМ. В этом случае конструктор с помощью светового пера и клавиатуры производит разработку топологии микро-схем, вызывая необходимые ему графические изображения элементов и размещая их на экране ЭЛИ. Он может перемещать, переворачивать и масштабировать на экране изображение отдельных элементов. После получения удовлетворительного варианта он выполняет разводку межсоединений. ЭВМ помогает ему быстро производить необходимые расчеты и выдает перфоленту для автоматического изготовления комплекта фотошаблонов и документации.  [c.31]


В настоящее время наряду с созданием САПР конструкций широкое распространение начинают получать разработка и внедрение САПР технологических процессов. По принципу построения, структуре, стадиям разработки эти системы во многом аналогичны САПР конструкций. Наличие системы автоматизированного проектирования какого-либо изделия создает предпосылки для более эффективной организации функционирования С.№Р технологических процессов его изготовления, поскольку результаты проектирования изделия, заложенные в память ЭВМ, могут быть использованы далее для автоматизированного проектирования технологического процесса. При этом отпадает необходимость в ручной подготовке входной информации, представляющей собой утомительный и трудоемкий этап, часто сопровождающийся ошибками.  [c.7]

Разработка системы автоматизированного проектирования, ее подсистем и компонентов согласно [251 и ГОСТ 23501.1—79 включает следующие стадии пред-проектные исследования, техническое задание техническое предложение, эскизный проект, технический проект, рабочий проект, изготовление, отладка и испытания, ввод в действие.  [c.16]

Цель этой книги-дать достаточно широкий обзор технических проблем автоматизации проектирования и автоматизации производственных процессов (АПР/АПП). Проблемы эти связаны с использованием средств интерактивной машинной графики и машинного проектирования, с числовым программным управлением (ЧПУ), автоматизированным управлением технологическими процессами, робототехникой, групповой технологией, интегрированным управлением производством и гибкими производственными системами. Многие из названных проблемных областей рассматриваются подробно в других статьях и книгах, наиболее важные из которых мы попытались отобрать и включить в список литературы, помещенный в конце каждой главы. Эта книга имеет ту отличительную особенность, что в ней собраны воедино все вопросы автоматизации проектирования и производства изделий и сделана попытка продемонстрировать их взаимную связь. Можно утверждать, что соответствующие проблемы представляют собой некий континуум профессиональной деятельности производственной фирмы, а не простой набор отдельных функций. Системы автоматизации проектирования и автоматизации производственных процессов (САПР/АПП) являются тем самым средством интеграции и автоматизации практически всех сторон деятельности по разработке и изготовлению изделий, которое позволяет повысить эффективность и увеличить производительность труда.  [c.8]

В период подготовки производства сроки проектирования штампов имеют немаловажное значение, так как от них зависят и сроки освоения и выпуска новой продукции. Для сокращения времени проектирования штампов и повышения его качества, повышения уровня использования стандартных деталей и сборочных единиц штампов, снижения себестоимости проектирования и высвобождения инженерно-технических работников от рутинного труда при выполнении графических работ получила развитие система автоматизированного проектирования штампов (САПР Ш). Сущность этой системы заключается в программной переработке с помощью средств вычислительной техники (ЭВМ) входных данных о штампуемой детали в сведения о конструкции и размерах деталей и сборочных единиц штампа, предназначенного для ее изготовления.  [c.290]

Следующим этапом анализа является выбор метода достижения точности исходного звена с учетом возможностей его реализации в автоматическом режиме. Последний этап состоит в расчете допусков составляющих звеньев и координат середин полей допусков. Номинальные размеры составляющих звеньев определяют заранее исходя из расчетов, деталей машин на прочность, жесткость и т.д. по соответствующим формулам при проектировании конструкции изделия. Практически два последних этапа выполняются параллельно. Оптимальное решение прямой задачи распределения допусков по составляющим звеньям осуществляется таким образом, чтобы затраты на изготовление деталей и сборку машины были минимальны. Наилучшим образом эту сложную задачу можно решить с использованием системы автоматизированного проектирования (САПР) в интегрированном производстве. В этом случае, опираясь на базы данных, пополняемые в процессе производства, можно быстро оценить изменения стоимости изготовления и сборки сборочной единицы при изменении допусков составляющих звеньев.  [c.22]

Перед тем как приступить к рассмотрению создания посадочного места и корпуса компонента, необходимо подготовить описание его контактных площадок. Как известно, во всех системах автоматизированного проектирования печатных плат информация о графике контактных площадок содержится отдельно от графики корпуса компонента. Это связано с тем, что при изготовлении фотошаблона требуется обеспечить сопряжение программных средств и технологического оборудования. Поэтому каждый проект обязательно имеет список используемых контактных площадок и соответствующих им типов  [c.250]

Проектирование технологических процессов (заготовительных, механической обработки резанием, сборки), технологической оснастки, специального инструмента и нестандартного оборудования входит в автоматизированную систему технологической подготовки производства (АСТПП). В указанной системе технологической подготовки производства ее составляющие подсистемы (системы) на предприятиях в большинстве случаев функционируют либо отдельно, либо объединяясь в несколько подсистем (систем). В настоящее время наметилась тенденция к созданию комплексных систем, объединяющих автоматизированные системы конструирования изделий, технологической подготовки производства и изготовления деталей, сборки изделий, упаковки и транспортирования готовой продукции.  [c.82]


Система автоматизированного конструирования позволяет описать геометрический образ детали. Эти данные передают в систему проектирования технологических процессов и подготовки УП для токарных станков с ЧПУ. Если технолог-программист уверен, что система автоматизированной подготовки (САП) УП достаточно обучена для разработки программ изготовления подобных деталей, то он задает автоматический режим. В противном случае он использует режим диалога. После окончания работы САП УП разработанный технологический процесс выводят на печать, а УП записывают на магнитную ленту.  [c.150]

Подсистема хранения информации КИПР-ЕС основана на использовании оперативных БД (архивов) для обеспечения взаимодействия функциональных подсистем и введения интерфейса с БД общего назначения, предназначенного для связи с внешними по отношению к КИПР-ЕС системами автоматизированного проектирования и изготовления (информационная связь с подсистемой анализа НДС и динамических характеристик конструкций обеспечивается посредством файлов общего назначения F , FL, FW). В качестве вариантов организации БД общего назначения рассматривались СУБД типа СЕТЬ, СЕТОР, КОМПАС [4, 7].  [c.374]

Системы автоматизации проектирования и изготовления с полным сквозным циклом еще не созданы. Их появление ожидается в 90-е годы. В 1984 году из 300 гибких автоматизированных производств, имеющихся в мире, насчитывалось не более 50 систем с достаточно крупными фрагментами сквозного цикла. Опрос пользователей систем САП/САМ позволяет судить о получаемой экономии 62 % пользователей отмечают экономию в чертежных работах 11 % — в проектировании 0,3 /о — в анализе и оценке 26,7 % пользователей мнения об экономии вообще не составили. Большинство пользователей отмечают экономию только в чертежных работах. Эта экономия для систем, изготовляемых под ключ , составляет примерно соотношение 3 1. Поэтому попытки объединить САО/САМ и гибкие производственные системы сразу же показали, что охвачены далеко не все системообра-зуюшие факторы — анализ методов производства, выбор оборудования и процессов, анализ сроков и затрат, технологическая подготовка производства и т. д.  [c.201]

Процесс конструирования раскатки многошпиндельной коробки может быть выполнен в диалоговом режиме. На рис. 135 приведена система автоматизированного конструирования и изготовления многошпиндельных коробок [97]. Исходные данные для проектирования 1 вводятся в оперативную память ЭВМ СМ-4. В режиме диалога с помош,ью графического дисплея производится конструирование раскатки многошпиндельной коробки 2). Далее обеспечивается вывод информации на чертежнографический автомат 3. Кроме того, подготовляются управляющие программы 4 и конструкторская документация 5 для обработки детал 7 на станках с ЧПУ 6. Спецификация сконструированной шпиндельной коробки используется в автоматизированной системе управления производством 8.  [c.246]

Примером в области автоматизированного проектирования и изготовления вырезных штампов является система Auto-die, разработанная итальянской фирмой Olivetti и система Автоштамп 1П .  [c.55]

В шестор книге пособия Системы автоматизированного проектирования излагаются методы автоматизированного конструирования узлов, деталей машин и устройств даются основные сведения о САПР технологических процессов на примере машиностронтельн111х отраслей описываются особенности конструирования изделий и разработки технологических процессов в комплексных автоматизированных системах проектирования м изготовления, а также для условий гибких производственных систем.  [c.4]

На рис. 4.3 (где БнД1 и БнД2 — соответственно банки данных конструктора и технолога, ГПМ — гибкий производственный модуль А—адаптер) показана схема функционирования комплексной системы проектирования и изготовления деталей. Она состоит из автоматизированных систем конструирования деталей типа тел вращения /, проектирования технологических процессов и подготовки управляющих программ (УП) для товарных станков с ЧПУ II, изготовления деталей типа тел вращения III. Токарные станки с микропроцессорами имеют через адаптер А обратную связь с системой подготовки УП.  [c.150]

Накопленный опыт показывает, что комплексные автоматизированные системы проектирования и изготовления изделий [32], в которых интегрированы функц)1и на всех этапах создания объектов новой техники, особенно эффективны в условиях опытного, единичного и мелкосерийного производства. Указанные типы производства сопряжены с многократными перестройками технологии и переналадками технологического и вспомогательного оборудования в связи с постоянно меняющейся номенклатурой изготовляемых деталей.  [c.152]

Роботизация удовлетворяет большинству перечисленных требований и имеет следующие достоинства по сравнению с обычными способами автоматизации механообрабатывающего производства способствует развитию унификации средств технологического оснащения и методов управления производственными системами способствует более широкому применению принципов типизации технологических процессов и операций обеспечивает большую гибкость производственных систем снижает затраты на проектирование и изготовление оборудования для автоматизированных производств, так как в РТК можно применять универсальные промышленные роботы, серийно выпускаемые промышленностью РТК достаточно легко объединяются с АСУ ТП и АСУП. Помимо этого роботизация в ряде случаев является единственно доступной и быстро осуществимой формой автоматизации процессов механической обработки деталей.  [c.509]

Примером такой интеграции может служить система Кадам ( adatn), разработанная и внедренная в 1974 г. фирмой Локхид Lo kheed, США) для автоматизации проектирования деталей самолетов и автоматизации программирования станков для изготовления этих деталей. Ряд подобных интегрированных систем создан и в СССР. Так, в Ленинграде создана система автоматизированного проектирования деталей и технологической подготовки производства в рамках интегрированного производственного комплекса для токарной обработки тел вращения [34].  [c.115]

В результате решения этих задач будут созданы ГАП на базе РТК с программным и адаптивным управлением от ЭВМ, которые позволят сократить сроки и затраты при освоении новых видов изделий в 1,5—2 раза, повысить производительйость труда в 2— 5 раз, увеличить коэффициент сменности оборудования до 2,8 и резко сократить численность обслуживающего персонала. Интеграция ГАП с системами автоматизированного проектирования технологической подготовки производства под общим управлением от ЭВМ позволит уменьшить примерно в 1,5 раза затраты на проектирование и производство изделий, обеспечить широкую взаимозаменяемость агрегатов и модулей, изготовляемых в странах СЭВ, снизить трудоемкость их изготовления в 2 раза, повысить качество планирования, учета, контроля и организации производства, сократить в 1,5—2 раза сроки его технологической подготовки.  [c.323]

В настоящее время при изготовлении чертежей и конструкторской документации системы автоматизированного проектирования (САПР) получают все более широкое распространение. Использование компьютера дает преимущества в изготовлении чертежей повышается скорость черчения и рисования фрагменты спроектированного ранее чертежа можно использовать при последующей работе при необходимости вкосятся испраалсккя з готовый чертеж без перерисовывания заново всего остального. Чертеж может выводиться на печать произвольное количество раз. При использовании САПР увеличивается точность чертежа [ ].  [c.1]


Эксперименты, проведенные А. А. Гетьманом [22], позволили получить необходимые количественные данные для оценки эффективности технологического процесса изготовления литых деталей. Показателями эффективности являются технологический коэффициент запаса прочности и коэффициент, учитывающий концентрацию нап-)яжений, влияние размеров детали и состояние ее поверхности. 1олученные данные по конструированию элементов литых деталей являются исходными параметрами для системы автоматизированного проектирования конструкций литых деталей из различных сплавов.  [c.36]

При автоматизированном выпуске конструкторской документации необходимо выполнять основные требования при выборе форм и форматов выходных документов необходимо учитывать стандарты ЕСКД система автоматизированного проектирования должна выдавать весь комплект конструкторских и технологических документов, обеспечивающих изготовление изделий и дополнительно конструкторских документов для этапов контроля изготовленного изделия машинные формы конструкторской документации Д0ЛЖ1НЫ обеспечивать не только автоматизированные, но и неавтоматизированные методы обращения документации основные графические документы целесообразно выполнять базовым способом.  [c.119]

Подсистема автоматизированного проектирования технологии изготовления инструментов. Отличительной особенностью системы автоматизированного проектирования технологии инструментов (САПТИ) является возможность ее функционирования как автономно, так и в автоматизированной системе инструментальной подготовки производства (АСИПП). На первом этапе АСИПГ1 с помощью ЭВМ конструирует специальный режущий инструмент, на втором — проектирует технологический процесс его изготовления, а для станков с ЧПУ рассчитывает и выдает упраи-  [c.15]

Автоматизированное проектирование можно определить как технологию использования вычислительных систем для оказания помощи проектировщикам при выработке, модификации, анализе или оптимизации проектных рещений. Вычислительная система состоит из аппаратных и программных средств, ориентированных на выполнение специализированных функций проектирования, требующихся конкретной фирме-пользователю. В состав аппаратных средств системы, как правило, входят ЭВМ, один или несколько графических дисплеев, блоки клавиатуры и ряд других видов периферийного оборудования. Программные средства включают в себя машинные программы, обеспечивающие работу с графическими терминалами системы, и прикладные программы, реализующие фунщии проектирования и конструирования, характерные для конкретной фирмы-пользователя. В качестве примера таких прикладных программ можно назвать программы анализа усилий и напряжений в элементах конструкций, расчета динамических характеристик механизмов и вычисления параметров теплопередачи, а также средства программирования процесса изготовления деталей на станках с ЧПУ. Набор конкретных прикладных программ изменяется от фирмы к фирме, поскольку различны их производственные линии, технологические процессы и интересы заказчиков. Эти факторы и определяют различия в требованиях к конкретным системам автоматизированного проектирования.  [c.13]

Роль систем автоматизированного проектирования режущего инструмента (САПР РИ) в общей структуре автоматизированных систем управления. Развитие гибких производственных систем в машиностроении повлияло на количественный и качественный рост автоматизированных систем управления. В машиностроении, так же как и в других отраслях, автоматизированные системы управления (АСУ) подразделяют (рис. 1.18) на автоматизированные системы управления производством (АСУП), системы автоматизированного проектирования (САПР), системы технологической подготовки производства (АСТПП), системы управления технологическими процессами (АСУ ТП), системы управления научных исследований (АСНИ), системы управления качеством продукции (АСУ КП). На предприятиях машиностроительного профиля САПР РИ является составной частью АСТПП [6], которая объединяет в единый непрерывный процесс следующие взаимосвязанные этапы автоматизированного проектирования проектирования технологических процессов механической обработки деталей основного производства (САПР ТПД) проектирование станочных приспособлений (САПР СП) проектирование режуших инструментов (САПР РИ) проектирование вспомогательных инструментов (САПР ВИ) проектирование контрольно-измерительных инструментов (САПР КИ) проектирование технологических процессов изготовления режущих, вспомогательных, контрольно-измерительных инструментов и приспособлений (САПР ТП РИ, САПР ВИ и др.).  [c.36]

ГАП — ГПС, состоящая из нескольких ГПК, обьединенных автоматизированной системой управления производством (АСУП) и АТСС, осуществляет автоматизированный переход на изготовление новых изделий с помощью автоматизированной системы научных исследований (АСНИ), системы автоматизированного проектирования (САПР) и автоматизированной системы технологаческой подготовки производства (АСТПП).  [c.711]


Смотреть страницы где упоминается термин Системы автоматизированного проектирования и изготовления : [c.55]    [c.6]    [c.60]    [c.3]    [c.157]    [c.6]    [c.80]    [c.305]    [c.355]    [c.329]    [c.386]   
Смотреть главы в:

Автоматизация конструкторского и технологического проектирования (САПР 6)  -> Системы автоматизированного проектирования и изготовления

Конструирование металлорежущих станков  -> Системы автоматизированного проектирования и изготовления



ПОИСК



Автоматизированное проектирование

О проектировании систем КПТ

Проектирование и изготовление

Система автоматизированного проектирования

Системы автоматизированного

Системы автоматизированного проектировани



© 2025 Mash-xxl.info Реклама на сайте