Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм деформации хрупкого

Хрупкое. Происходит в результате распространения магистральной трещины после пластической деформации, сосредоточенной в области действия механизма разрушения. Хрупкое разрушение подразделяется на идеально хрупкое и квазихрупкое (как бы хрупкое).  [c.319]

Таким образом, откольная прочность хрупких поликристаллических материалов зависит как от их исходной структуры, так и от предыстории нагружения. Ее измерения помогают прояснить механизм деформации материала в ударной волне.  [c.205]


Описанный механизм характеризует так называемое хрупкое разрушение. Хрупкому разрушению предшествует пластическая деформация до достижения трещины критического размера и затем хрупкое бездислокационное разрушение.  [c.72]

Применение и развитие схемы Иоффе для металлов принадлежит И. Н. Давиденкову [49]. Он вводит температурно-независимую характеристику сопротивления отрыву S . В то же время считается, что S суш,ественно зависит от пластической деформации. Давиденков отмечает, что у стали существуют два механизма разрушения (рис. 2.5,6). Хрупкое разрушение происходит при пересечении кривой сопротивления отрыву fd, которая возрастает с ростом пластической деформации. В случае, если кривая нагружения достигнет сначала кривой вязкого отрыва db, произойдет вязкое разрушение.  [c.57]

Предварительная пластическая деформация приводит к более легкому зарождению хрупкого разрушения по механизму снижения прочности эффективного препятствия, на котором происходит возникновение микротрещин.  [c.147]

Как было показано в разделе 2.2, вязкое разрушение материала в большинстве случаев происходит по механизму зарождения, роста и объединения пор. Развитие пор контролируется пластической деформацией. Поэтому после зарождения вязкого макроразрушения его продвижение в соседней с разрушенным объем материала возможно только после достижения в этом объеме критической деформации. Таким образом, для продвижения вязкой трещины необходимо, чтобы у ее движущейся вершины статическая деформация достигала критической величины. Иными словами, развитие вязкой трещины есть не что иное, как непрерывное зарождение вязкого разрушения у ее движущейся вершины. Отметим, что именно такая закономерность коренным образом отличает развитие трещины при вязком разрушении от ее развития — при хрупком. При хрупком разрушении для продвижения трещины необходима незначительная энергия, так как движущаяся трещина острая [ее  [c.252]

В свете накопленных данных возникло предположение [3, 30], что в основе механизма КРН лежит не электрохимическое растворение металла, а ослабление когезионных связей между поверхностными атомами металла вследствие адсорбции компонентов среды. Этот механизм был назван адсорбционным. Так как хемосорбция специфична, разрушающие компоненты среды также обладают специфичностью. С уменьшением поверхностной энергии металла увеличивается тенденция к образованию трещин при растягивающих напряжениях. Следовательно, этот механизм соответствует критерию образования трещин на стекле и других хрупких твердых телах — так называемому критерию Гриффитса, согласно которому энергия деформации напряженного твердого тела должна превышать энергию общей увеличившейся поверхности, образованной зарождающейся трещиной [31 ]. Любая адсорбция, снижающая поверхностную энергию, должна способствовать образованию трещин, однако вода, адсорбированная на стекле, снижает напряжение, необходимое для растрескивания.  [c.140]


Хрупкое. Происходит в результате распространения магистральной трещины после пластической деформации, сосредоточенной в области действия механизма разрушения,  [c.112]

Причины перехода металлов из пластичного состояния в хрупкое и из хрупкого в пластичное заключаются в том, что возможность начала пластической деформации и возможность хрупкого разрушения не связаны между собой, они совершаются разными механизмами и зависят от разных внешних и внутренних факторов.  [c.113]

Хрупкие материалы при разрушении имеют незначительную остаточную деформацию, и характер разрушения определяется разрывом образца по некоторому поперечному сечению с шероховатой поверхностью разрыва. Пластичные материалы при деформировании имеют большую остаточную деформацию. В этом случае разрушению предшествует интенсивное скольжение по плоскостям наибольших касательных напряжений, которые, как установлено в 3.2, составляют угол л/4 с осью растяжения. На образцах с достаточно гладкой поверхностью четко видны линии скольжения, составляюш,ие угол л/4 с осью растяжения (линии Чернова). По этим плоскостям движутся дислокации, и механизм пластического деформирования может быть представлен как проскальзывание и поворот в направлении сближения с осью растяжения тонких дисков, показанных на рис. 7.22. Такие проскальзывания происходят по всем плоскостям, составляющ,им угол л/4 с осью. В результате поворота этих дисков в процесс проскальзывания включаются другие плоскости образца, которые ранее составляли угол, отличный от л/4, и в которых было до этого менее интенсивное проскальзывание.  [c.140]

В отличие от первых двух критериев прочности, применимых к хрупким материалам, критерий по наибольшим касательным напряжениям применим к пластичным материалам, а точнее к определению момента перехода материала в состояние пластического деформирования. Это объясняется тем, что механизм пластического деформирования в первую очередь связан со сдвиговой деформацией, которая предопределяется значением касательных напряжений.  [c.165]

Однако при растяжении с одновременным воздействием гидростатического давления предельная до разрушения деформация увеличивается достаточно значительно. а разрушающее напряжение возрастает не намного, причем хрупко разрушающиеся металлы при наложении гидростатического давления разрушаются вязко при наличии значительных деформаций. Рассматривая механизмы разрушения с позиций теории дислокаций, И. А. Одинг отмечает, что так как взаимодействуют силовые поля дислокаций, содержащие и касательные, и нормальные напряжения, то трудно говорить, какие же напряжения—растяжения, сжатия или сдвига — ответственны за разрушение . Касательные напряжения, вызывающие пластическую деформацию, приводят к увеличению дефектов кристаллической решетки, росту уровня внутренних напряжений, препятствующих внешним приложенным напряжениям, и подготавливают металл к разрушению. Нормальные напряжения растяжения ускоряют процесс разрушения, а нормальные напряжения сжатия, в частности приложенное гидростатическое давление, подавляют процесс разрушения.  [c.447]

Для многих металлов и сплавов с о. ц. к. решеткой в этой области существует узкий температурный интервал, в котором пластичность резко падает, часто до нуля (температура хрупкого перехода). Увеличение степени загрязнения металла примесями и рост величины зерна смещают хрупкий переход в Fe, W, Мо, Сг и их сплавах в область более высоких температур. Понижение температуры и увеличение скорости деформации вызывают уменьшение числа систем скольжения и возрастание роли деформации двойникованием в ущерб скольжению с резким снижением пластичности. Повышение температуры в область теплой деформации приводит к смене механизма двойникования механизмом скольжения и увеличению пластичности. Аналогично ведут себя металлы с гексагональной решеткой. Металлы с г. ц. к. решеткой не охрупчиваются даже при низких (отрицательных) температурах.  [c.511]


Поскольку при быстром нагружении развитие пластических деформаций затруднено, главенствующим механизмом разрушения оказывается развитие трещин, и материал обостренно воспринимает местные повышенные напряжения. Это позволяет создать специальный метод испытания материала на чувствительность к хрупкому разрушению — так называемое испытание на ударную вязкость.  [c.84]

Вязкость разрушения существенно зависит от температуры, так как с ней связаны свойства пластичности металлов, отражающие особенности структурного и суб-структурного механизма элементарных процессов пластической деформации. Понижение температуры способствует образованию хрупкого состояния и наиболее ярко выражено для конструкционных металлов на основе железа.  [c.40]

Модель упругого тела для малых деформаций по Гуку и развиваемые ниже математические приближенные постановки задач неприемлемы для описания действительных явлений непосредственно вблизи концов трещин в хрупких телах. Тем не менее для упругих задач для тела в целом достаточно только установить правильно величину концентрированного оттока энергии аАа , который в рамках более детальных моделей и в более точной математической трактовке может быть обусловлен различными физическими механизмами.  [c.538]

Использование метода акустической эмиссии при механических испытаниях образцов и конструкций полезно для изучения механизма разрушения. Например, анализ кривых, подобных показанным на рис. 115, дает возможность исследовать движение дислокаций во время пластической деформации, а также процесс хрупкого разрушения. Таким образом, этим методом можно оценить хрупкость, вязкость, твердость и другие свойства металлов.  [c.320]

Согласно гипотезе, принятой в современной теории, механизму усталостного разрушения дается следующее толкование. Вследствие концентрации напряжений в отдельных зонах материала происходит пластическая деформация, в то время как во всей детали напряжения не превышают предела упругости. При переменных напряжениях в 3(тих перенапряженных зонах происходит местное упрочнение (явление наклепа) и хрупкое разрушение материала в виде микроскопической трещины, дальнейшее разрастание которой приводит к разрушению детали.  [c.151]

Особенно интенсивно происходит двойникование в металлах с ограниченным числом систем скольжения. При этом, создавая мощные концентраторы напряжения, двойникование инициирует, например, в ГПУ-металлах скольжение по дополнительным призматическим и пирамидальным системам, что приводит к существенному повышению пластичности [5, 17]. В некоторых ориентировках монокристаллов с ГПУ-решеткой двойникование вообще является доминирующим механизмом пластической деформации [5, 18]. В ОЦК-металлах концентраторы напряжений у верщин двойников и высокая скорость протекания процесса двойникования способствуют раскрытию трещин и соответственно хрупкому разрушению металлов [9, 19] ограничивая таким образом их низкотемпературную пластичность.  [c.9]

Разрушение в области температур хрупко-пластичного перехода (Тх—Тх) происходит после некоторой, часто значительной, пластической деформации (рис. 5.13) и характеризуется тем, что оно начинается и развивается до некоторого предела по одному механизму, а завершается по другому — хрупко, сколом. Фрактографический анализ позволяет по речному узору скола выделить эти две стадии разрушения стадию вязкого докритического роста трещины и стадию  [c.206]

В отличие от монокристаллов механическое двойникование в поликристаллах играет, согласно современным представлениям [22], роль только дополнительного механизма деформации, который не вносит заметного вклада в пластичность материала, однако существенно влияет на протекание скольжения при низких температурах, как бы моделируя скольжение за счет локальных концентраций напряжения. Важно отметить при этом двойственную роль механического двойникования, которое из-за пониженной релаксационной способности материала, связанной с высокими значениями сопротивления движению дислокаций при низких температурах, может вызывать раскрытие хрупких микротрещин и последующее разрушение без заметной пластической дефюрмации (особенно в жестких схемах нагружения с элементами растяжения).  [c.56]

В результате исследования закономерностей распространения сквозных трещин, как было продемонстрировано выше, выявлено убывание скорости роста трещин в связи с возрастанием Вместе с тем показано [75, 82], что при = 1 -1 О СРТ в некоторых случаях могут не отличаться. Более того, при разной асимметрии цикла можно наблюдать различный, немонотонный характер влияния второй компоненты нагружения на рост усталостных трещин. Так, в стали SM41 при = -1 скорость возрастала с переходом от положительного к отрицательному соотношению главных напряжений а при отсутствии асимметрии цикла (пульсирующий цикл) результат был противоположен. Объяснение такой ситуации было предложено на основе представлений об охрупчивании материала, которое возникает при увеличении степени стеснения пластической деформации. Увеличение среднего напряжения или гидростатического давления в вершине трещины при возрастании положительного соотношения главных напряжений настолько снижает пластичность, что материал начинает хрупко разрушаться в результате смены механизма. При хрупком разрушении имеет место возрастание, а не снижение СРТ.  [c.314]

Исследования, проведенные на серийной установке ИМАШ-9-66, показали, что определение температурной зависимости микротвердости дает возможность получить весьма ценную информацию о поведении полупроводниковых материалов как в пластическом, так и в хрупком состояниях. Целесообразность проведения исследований по данной методике заключается в том, что, во-первых, при испытаниях на микротвердость в образце создается такое объемнонанряженное состояние, при котором невозможны раскрытие и распространение микротрещин во-вторых, анализ температурной зависимости микротвердости позволяет установить механизм деформации в различных температурных интервалах, а также изучать влияние на этот механизм легирования и возможных структурных и фазовых изменений.  [c.251]


Столь сильное отличие в пластичности при умеренных и высоких температурах обусловлено, очевидно, разным механизмом деформации в этих двух областях. В первом случае, когда интенсивность процессов снятие наклепа, определяемая развитием диффузионных процессов, сравнительно невелика, границы зерен шва более прочны и деформация проходит преимущественно путем сдвига внутри зерна. Во втором случае при резком повышении скорости диффузионных процессов, границы с большой несовер-шенностью строения оказываются уже слабым участком и по ним проходит разрушение. Очевидно, что со снижением скорости деформации при высоких температурах, т. е. с переходом к скоростям ползучести, температура начала появления хрупких разрушений будет снижаться до уровня эксплуатационных. Можно  [c.46]

Так, например, введение в молибден или вольфрам 25—30% рения сильно повышает низкотемпературную пластичность и резко понижает температуру перехода в хрупкое состояние. Отметим, однако, что практическому использованию рениевого эффекта препятствует очень высокая стоимость рения и крайне малая его распространенность. Поэтому обычно повышение пластичности металлов V—VI групп достигается тщательной очисткой их от примесей внедрения — кислорода, азота и углерода, малые количества которых способны вызвать сильное охрупчивание этих ОЦК металлов. Достигают повышения пластичности сплавов, связывая примеси внедрения в тугоплавкие соединения. Так, небольшие добавки титана и особенно циркония и гафния связывают растворенный углерод, азот и кислород в очень устойчивые дисперсные соединения, которые при низких температурах могут совершенно изменить механизм деформации и разрушения, переведя сплав в более пластичное состояние.  [c.146]

При температурах 600—1200° С условия протекания механизма деформации и разрушения изготовленной способом литого плакирования двухслойной стали Ст. 3 + Х18Н10Т наряду с взаимным деформационным влиянием в значительной мере контролируются процессами диффузионного взаимодействия изменяющего характер химической, структурной и механической неоднородности в зоне сопряжения слоев. В этом случае при 600—800° С наблюдается развитие межзеренного проска льзывания, наиболее активно проявляющегося в обезуглероженной зоне материала основы, а также локализации пластической деформации в узкой приграничной зоне вблизи поверхности раздела слоев биметалла. Интенсивное карбидообразование в участке аустенитной стали, непосредственно примыкающем к межслойной границе, способствует охрупчиванию и зарождению в нем микронадрывов, приводящих к развитию хрупких трещин. В слое основного металла происходит резкое ослабление сдвигового микрорельефа и обнаруживаются типичные признаки высокотемпературной деформации (образование складок, возникновение межкристаллических трещин, появление субструктуры, протекание рекристаллизации под напряжением.).  [c.136]

Согласно всем имеющимся данным, основной механизм сопротивления материалов кавитационному воздействию связан с механическими напряжениями. Схлопывание каверны независимо от того, обусловлен ли механизм разрущения образованием ударной волны или микроструйки (гл. 8), вызывает на поверхности материала нормальные напряжения. Сдвиговые напряжения в материале, возникающие вследствие неравномерного распределения давления, могут привести к пластической деформации или появлению кристаллических дислокаций. Механические напряжения могут вызвать также усталостное раз-рущение, которое может стать причиной кавитационного разрушения в случае малых пластических деформаций. Хрупкие материалы могут растрескиваться вследствие неравномерности нагружения при кавитации. Химическое и электромеханическое воздействия кавитации, по-видимому, сильнее всего проявляются на кристаллических материалах. Скорость реакций будет наибольшей на границах зерен и на вновь образовавшихся поверхностях, как в случае кристаллических дислокаций.  [c.430]

К настоящему времени механизм замедленного хрупкого разрушения не установлен с достаточной полнотой из-за многообразия процессов, протекающих в металле, находящемся под постоянной нагрузкой. В работах [210, 214] механизм образования трещины при замедленном хрупком разрушении рассматривается на основе представлений о пониженном сопротивле1П1н границ зерен сдвигу гю сравнению с телом зерна и о способности зерен к упруго-вязкому течению по границам. При приложении внешних напряжений по границам зерен происходит деформация, пропорциональная касательному напряжению на границе. Хотя в макрообъемах, больших по сравнению с размерами зерен, деформация может протекать однородно, в микрообъемах деформация происходит неоднородно, так как в области стыка зерен не происходит их относительного перемещения. Стык действует как запирающий механизм, препятствующий относительному перемещению соседних зерен, в результате чего создается напряжепное состояние, при котором на стыке зерен возникает сильная концентрация напряжений, приводящая к гидростатическому растяжению. Напряжения на стыках зерен возрастают под действием приложенных внешних напряжений до тех нор, пока пе будет достигнута теоретическая прочность и па стыке зерен не возникнет трещины.  [c.180]

На основании изложенного выше можно сделать вывод, что механизм разрушения хрупких и пластичных ориентаций один и тот же с той лпшь разницей, что опасные нарушения создаются за счет различных элементов деформации.  [c.78]

Большой вклад в развитие представлений о механизме деформации и разрушения пород при вдавливании, особенно для хрупких, твердых пород, внесен Р. М. Эйгелесом и сотрудниками руководимого им коллектива лаборатории ВНИИБТ [56, 145].  [c.200]

Предположим, что в первом варианте микротрещина зародилась в плоскости скольжения (например, по механизму Гилмана—Рожанского [25, 247]) и ориентирована параллельно сдвиговым напряжениям, т. е. подвергается только П моде деформирования. В этом случае распределение напряжений у ее вершины согласно работе [199] таково, что т (/Ос(= 1,03, где т г и Ос1 — сдвиговое и растягивающее напряжения у вершины трещины, действующие в плоскостях скольжения и спайности соответственно (Tsi = Tre e=o Ос( = (fee 10 450 где г, 6 — полярные координаты, отсчитываемые от вершины микротрещины). Поскольку в данной ситуации для ОЦК металлов Тзг/сГсг Тт.п/сГт.п = = 0,24 0,28 (тт. п и От.п — теоретическая прочность на сдвиг и на отрыв соответственно), зародившаяся микротрещина не является устойчивой к сдвиговым процессам в ее вершине [230]. С возникновением микротрещины начинается эмиссия дислокации из ее вершины и, следовательно, рост такой микротрещины в процессе деформирования будет пластический, стабильный, контролируемый деформацией. Таким образом, зародышевая микротрещина, ориентированная параллельно сдвиговым напряжениям, растет по пластическому механизму и, следовательно, притупляется, становясь трещиной, не способной инициировать хрупкое разрушение.  [c.68]

Строение изломов при хрупком разрушении образцов из стали 15Х2МФА с разной величиной статической деформации, предшествующей разрыву, показано на рис. 2.13. Разрушение металла происходило по механизму скола и микроскола. Величина пластической деформации в момент зарождения хрупкого макроразрушения (локализация участка, где происходит разрушение, будет указана ниже) составила для образца, изображенного на рис. 2.13, а, приблизительно 0,3%, а для образца на рис. 2.13,6 е 22 %. Различие в строении изломов  [c.83]

Можно отметить следующие особенности разрушений при статическом нагружении при одновременном действии механических нагрузок и рабочих сред. В условиях общей коррозии характер разрушений мало отличается от такового при статическом нагружении в нейтральной среде. В зависимости от качества металла и свойств коррозионной среда разрывы происходят по механизму вязкого или хрупкого разрушения. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что, несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразование) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой. В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва. Часто имеет ме-  [c.119]


Впоследствии было выяснено, что истиннс хрупкое разрушение может происходить лишь в очень немногих случаях.. В основном же, при росте трещины перед ее кончиком всегда возникает, так называемая, пластическая зона. По своей структуре и свойствам пластическгл зона напоминает металл в состоянии, близком к расплавленному. Изменение структуры материала в пределах пластической зоны -называется пластической деформацией. При наличии пластической деформации происходит иязкое разрушение. Оно наблюдается в пластичных материалах, когда пластическая деформация материала достигает такой величины, что он разделяется на две части. Разрушение происходит в результате процесса зарождения, слияния, и распространения внутренних пор. Подробно механизмы протекания пластической деформации будут описаны в главе 4.  [c.19]

Таким образом, с одной стороны, чем ближе напряженное состояние к трехосному равномерному растяжению (когда ap g = 0), тем выше вероятность срабатывания механизма разрушения отрывом. С другой стороны, чем ближе к нулю величина тем вероятнее реализация механизма пластической деформации, а затем и разрз/шения срезом. При этом для типично хрупкого  [c.144]

Рис. 12.1. Распределение напряжений перед концом хрупкой трещины I — область номинальных напряжений, II — область справедливости асимптотических формул, III — область больжих нелинейных деформаций и реализации механизма разрушения. Рис. 12.1. <a href="/info/166564">Распределение напряжений</a> перед концом хрупкой трещины I — область <a href="/info/5970">номинальных напряжений</a>, II — область справедливости <a href="/info/101509">асимптотических формул</a>, III — область больжих нелинейных деформаций и реализации механизма разрушения.
Разрушение по границам элементов структуры — межзеренное или межъячеистое разрушение, при котором трещина идет по границам зерен или дислокационных ячеек. Различают хрупкое межзеренное разрушение, которому предшествует пластическая деформация-внутренних объемов зерен и пластичное межзеренное разрушение. Указанные типы межзеренного разрушения обычно относят к низкотемпературным типам разрушения. Кроме того, существуют высокотемпературное межзеренное разрушение и межзеренное разрушение при ползучести. Эти механизмы обусловлены высокотемпературным-проскальзыванием по границам зерен и диффузионным зарождением пор на границах. Они подробно изложены в обзорах Эшби с сотрудниками [404].  [c.201]


Смотреть страницы где упоминается термин Механизм деформации хрупкого : [c.35]    [c.253]    [c.141]    [c.142]    [c.115]    [c.68]    [c.223]    [c.266]    [c.50]    [c.75]    [c.74]    [c.426]    [c.181]    [c.230]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.574 ]



ПОИСК



Деформация механизм



© 2025 Mash-xxl.info Реклама на сайте