Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Феррит Влияние легирующих элементов

Как указывалось выше, в сталях феррито-перлитного класса основными факторами, ответственными за прочность, являются свойства ферритной матрицы, прочность которой определяется размером исходного аустенитного зерна, прочностью чистого железа, влиянием легирующих элементов и углерода, растворенных в феррите, и размером ферритного зерна. Вторым фактором, влияющим на предел прочности стали с ферритной матрицей, является упрочняющая карбидная фаза.  [c.212]


Влияние легирующих элементов на феррит  [c.331]

Приведённые на фиг. 24 — 28 кривые характеризуют влияние легирующего элемента (Сг, Мо, N1, Мп, 51) на механические свойства феррита (сплавы содержат менее О,О2> /0 С). Слабее других элементов упрочняют феррит хром, молибден и вольфрам — элементы, изоморфные а-железу сильнее — марганец, ни-  [c.332]

Влияние легирующих элементов определяется фактором растворимости их в феррите или цементите или образованием специальных карбидов.  [c.342]

Влияние легирующих элементов на перлитное и промежуточное, превращения аустенита. Легирующие элементы оказывают весьма существенное влияние на верхнюю часть диаграммы изотермического превращения аустенита. Никель, кремний, марганец и другие элементы, растворяющиеся в феррите, повышают устойчивость аустенита и сдвигают вправо кривые начала превращения (фиг. 184, а). Кобальт представляет исключение среди элементов, растворяющихся в феррите, — он понижает устойчивость аустенита и сдвигает кривую начала превращения влево. Хром, молибден, вольфрам и другие элементы-карбидообразователи вызывают на кривых начала превращения два выступа (фиг. 184, б). Т ри этом верхний выступ кривой начала перлитного превращения сдвигается вправо, а нижний выступ промежуточного превращения сдвигается или влево, или вправо, но в меньшей степени, чем в перлитном превращении. Это указывает, что элементы-карбидообразователи значительно меньше тормозят промежуточное превращение. Это объясняется тем, что во время перлитного превращения атомы легирующих элементов, присутствуя как в аустените, так и в специальных карбидах и заполняя собой дислокации, тормозят диффузию.  [c.309]

Феррит — основная структурная составляющая (не менее 90 % (об.)) сталей, во многом определяющая их свойства. Легирующие элементы, растворяясь в феррите, упрочняют его. Свойства феррита зависят от непосредственного и косвенного влияния легирующих элементов. Непосредственное влияние связано с искажением кристаллической решетки феррита. Его оценивают по формуле  [c.258]

Характер влияния легирующих элементов на диффузионную подвижность углерода в феррите изучался многими исследователями. Было показано, что карбидообразующие элементы Мп, Сг, W, Мо, V и Si снижают коэффициент диффузии углерода в феррите. Энергия активации Q для диффузии углерода в легированном феррите приближается к значениям ее для аустенита (26—35 ккал/ат). Кобальт и никель мало влияют на коэффициент диффузии углерода в феррите,  [c.287]


К другим факторам, способствующим упрочнению твердых растворов, относятся различие типов кристаллических решеток железа и легирующего элемента, а также влияние легирующего элемента на силы межатомных связей и тонкую структуру зерна. Известно, например, что никель, имеющий гранецентрированную кубическую решетку, меньше упрочняет феррит, чем марганец, кристаллизующийся в сложную кубическую решетку, или кремний, имеющий решетку алмаза.  [c.174]

Влияние легирующих элементов на свойства феррита и аустенита. Как видно из рис. 83, легирующие элементы, растворенные в феррите, повышают его предел прочности (рис. 83,а), не изменяя существенно относительного удлинения (рис. 83,6), за исключением марганца и кремния при содержании их >2,5— 3,0%.  [c.158]

Влияние легирующих элементов определяется также их взаимодействием с углеродом. Сравнительно небольшая группа легирующих элементов не образует собственных карбидов в стали и не входит в состав цементита, они лишь растворяются в аустените пли феррите. Такими элементами являются кремний, медь, кобальт, никель. Все остальные легирующие элементы — марганец, хром, молибден, вольфрам, ванадий, ниобий, титан — не только растворяются в аустените или феррите,  [c.176]

При растворении легирующих элементов в феррите параметры решетки Fea изменяются, что вызывает изменение свойств феррита. Легированный феррит, по сравнению с ферритом углеродистых сталей, имеет более высокую прочность и твердость пластичность и вязкость его меньше. Влияние различных легирующих элементов на упрочнение феррита разное. Наибольшее упрочнение феррита вызывают кремний и марганец пластичность и вязкость при этом снижаются. Следует отметить, что такой элемент, как никель, ведет себя по-особому упрочняя феррит, он не снижает его пластичность и вязкость. Упрочнение легированного феррита объясняется искажением решетки F a, а также измельчением зерен и блоков мозаики под влиянием легирующих элементов.  [c.161]

Применение легированных конструкционных сталей обусловливается тем, что углеродистая конструкционная сталь, хотя и обладающая достаточно высокими механическими свойствами, иногда не может удовлетворить предъявляемым к ней требованиям. Поэтому для ответственных деталей применяют легированные конструкционные стали, более высокие механические свойства которых по сравнению с углеродистыми сталями связаны с положительным влиянием легирующих элементов, углубляющих закалку, затрудняющих выделение карбидов при отпуске, измельчающих зерно и упрочняющих феррит.  [c.283]

Высокие механические свойства среднелегированных сталей достигаются легированием элементами, упрочняющими феррит и повышающими прокаливаемость стали, и надлежащей термообработкой, после которой в полной мере проявляется положительное влияние легирующих элементов. Поэтому среднелегированные стали всегда характеризуются как химическим составом, так и видом термообработки. Среднелегированные стали, предназначенные для изготовления сварных конструкций, как правило, подвергаются улучшению (закалке с последующим высоким отпуском) или закалке и низкому отпуску (см. табл. 10-7).  [c.526]

Отсутствие систематических исследований по влиянию легирующих элементов феррит-  [c.251]

Рис. 4.6. Влияние легирующих элементов на коэффициент активности углерода в аустените (а—ж) и феррите (з) при определенной температуре, С а. б, е—а — 1000 в, в — 1050 д = 980 Рис. 4.6. <a href="/info/58162">Влияние легирующих элементов</a> на <a href="/info/6630">коэффициент активности</a> углерода в аустените (а—ж) и феррите (з) при определенной температуре, С а. б, е—а — 1000 в, в — 1050 д = 980
Влияние легирующих элементов на аустенизацию при нагреве конструкционных сталей. До нагрева конструкционной стали некарбидообразующие элементы находятся в феррите, а карбидообразующие - распределены в разных долях между карбидной фазой и ферритом. Структура характеризуется химической неоднородностью. По окончании аустенитного превращения аустенит также неоднороден. В участках аустенита, соответствующих исчезнувшим кристаллам феррита и карбида, различны массовые доли не только углерода, но и легирующих элементов. Для выравнивания массовых долей легирующих элементов в аустените, особенно медленно диффундирующих, необходимо или увеличить время аустенизации, или повысить температуру. Вследствие неполной гомогенизации аустенита в легированной стали ухудшается ее прокаливаемость негомогенный аустенит легко распадается на ферритно-карбидную смесь.  [c.55]


Влияние легирующих элементов на обрабатываемость определяется йх способностью растворяться в феррите или образовывать карбиды.  [c.285]

Влияние легирующих элементов. Легирующие элементы вводят в сталь для повышения ее конструкционной прочности. Основной структурной составляющей в конструкционной стали является феррит, занимающий в структуре не менее 90% по объему. Растворяясь в феррите, легирующие  [c.51]

Изучение эрозионной стойкости сталей /170/ показало, что определяющими являются теплофизические характеристики металла, поэтому выбор легирующих элементов или их комбинации необходимо осуществлять с учетом этих свойств, а также исходя из условий абразивной и ударной прочности металлов. Легирующие элементы преимущественно растворяются в основных фазах железоуглеродистых сплавов (феррит, аустенит, цементит), образуя сложные карбиды и другие соединения. Улучшение технических свойств сталей (прочность, износостойкость и т.д.) достигается также с помощью термической обработки, в результате которой происходит перераспределение химических элементов и соединений как внутри кристаллических зерен, так и между ними, что оказывает существенное влияние на энергию межатомных связей. Углерод является одним из основных легирующих элементов, и при увеличении содержания углерода эрозия возрастает по линейному закону, что может быть объяснено уменьшением  [c.173]

Основной структурной составляющей конструкционных сталей является феррит. Легирующие элементы растворяются в феррите, искажая при этом кристаллическую решетку. Искажение решетки вызывает изменение свойств феррита — твердость и прочность повышаются, а пластичность и вязкость снижаются. При этом степень влияния различных элементов неодинакова. Наиболее сильно упрочняют феррит кремний, марганец и никель. Большинство элементов, за исключением никеля, снижают ударную вязкость. Марганец и кремний снижают вязкость при содержании более 1 %.  [c.155]

Исследование проводилось на стали, выплавленной в индукционной электропечи. С целью устранения влияния особенностей различных плавок легирующие элементы в сталь вводили по разливкам на базе одной плавки. Раскисление производилось ферро марганцем и ферросилицием. Химический состав исследованных сталей приведен в табл. I.  [c.83]

Растворимость легирующих элементов в железе зависит в основном от атомного объема и атомного строения элемента, а также от типа и параметра атомно-кристаллической решетки. Лучшей растворимостью в железе обладают те элементы, которые имеют атомный объем, близкий к атомному объему железа. Такие элементы образуют однородные твердые растворы. Чем ближе тип и параметры кристаллической решетки растворимого элемента подходят к типу и размерам решетки Fe-растворителя, тем лучше такой элемент растворяется в ot-Fe или 1>-Ге. Образуя твердые растворы, легирующие элементы в той или иной степени искажают кристаллическую решетку железа, упрочняя таким образом феррит или аустенит. Основные легирующие элементы по убывающей способности упрочнять феррит можно расположить в следующий ряд Si, Mn, Ni, Mg, V, W, r. Введение легирующих элементов чрезвычайно сильно изменяет также температуру перехода железа из одной модификации в другую под влиянием одних элементов критические точки железа А3 и А4 сближаются, под влиянием других - расходятся, т.е. происходит сужение или расширение области температур устойчивого состояния твердого раствора l>-Fe. Поэтому все элементы, применяемые для легирования стали, по влиянию на критические точки железа делят на две группы в зависимости от того, расширяют или сужают они область твердого раствора y-Fe на диаграмме состояний системы Fe - элемент. Ni, u, Mn, Со, С, N расширяют область твердого раствора y-Fe. r, Al, Si, W, Mo и другие элементы относят к группе элементов, замыкающих область твердого T-Fe.  [c.77]

Легирующие элементы, растворяясь в феррите или аустените, оказывают разное влияние на полиморфизм железа.  [c.144]

При растворении легирующих элементов в феррите параметры решетки Fe изменяются, что вызывает изменение свойств феррита. Легированный феррит по сравнению с ферритом углеродистых сталей имеет более высокую прочность и твердость пластичность и вязкость его меньше. Степень влияния различных легирующих элементов на упрочнение феррита разная одни элементы упрочняют его в большей степени, а другие в меньшей. Следует указать, что такой легирующий элемент, как никель, ведет себя по-особому упрочняя феррит, он не снижает его пластичности и вязкости.  [c.212]

Легирующие элементы оказывают влияние на диффузионные превращения, связанные с выделением и коагуляцией карбидов, происходящие при отпуске закаленной стали. Элементы, не образующие карбидов и растворимые только в феррите (N1, 51 и др.), не влияют на характер изменения твердости при отпуске.  [c.278]

По типу равновесной структуры стали подразделяются на доэвтекто-идные, эвтектоидные, заэвтектоидные и ледебуритные. Эвтектоидные стали имеют перлитную структуру, а доэвтектоидные и заэвтектоидные наряду с перлитом содержат соответственно избыточный феррит или вторичные карбиды типа МзС. В структуре литых ледебуритных (карбидных) сталей присутствует эвтектика (ледебурит), образованная первичными карбидами вкупе с аустенитом поэтому по структуре они могут быть отнесены к белым чугу-нам, но их причисляют к сталям с учетом меньшего, чем у чугунов, содержания углерода (< 2%) и возможности подвергать пластической деформации. Влияние легирующих элементов на положение точек 8иЕ диаграммы Ре—С (см. рис. 4.1) проявляется чаще всего в их смещении в направлении меньшего содержания углерода. В сталях с высоким содержанием элементов, сужающих у-область, при определенной концентрации исчезает уоа-превращение (рис. 7.5, б). Такие стали относят к ферритному классу. При высокой концентрации в стали элементов, расширяющих у-область, происходит стабилизация аустенита с сохранением его при охлаждении до комнатной температуры. Эти стали причисляют к аустенитному классу. Таким образом, с учетом фазового равновесия легированные стали относят к перлитному, карбидному, ферритному или аустенитному классам.  [c.154]


Легированные стали по структуре, в условиях равновесия, можно разделить на следующие классы (рис. 103) доэвтектоидные стали, содержащие в структуре эвтектоид н избыточный легированный феррит (рис. 103, а), эвтектоидные и заэвтектоидные стали (рис. 103,6), содержащие эвтектоид и избыточные (вторичные) карбиды типа М3С, выделяющиеся при охлаждении из аустенита (доэвтектоидные, эвтектоидные и заэвтектоидные легированные стали обычно объединяют в один класс — перлитные стали), и ледебуритные (карбидные) стали, имеющие в структуре первичные карбиды (кристаллизующиеся из жидкого сплава). В литом виде первичные карбиды образуют эвтектику типа ледебурита (рис. 103, ж). В результате ковки карбиды принимают форму обособленных глобулей (рис. 103, е). Количество карбидов в этих сталях достигает 30—35%. Ледебуритные стали по структуре следовало бы рассматривать как белые чугуны. Но так как они содержат сравнительно небольшое количество углерода (менее 2,0%) и могут подвергаться пластической деформации (ковке), их относят к сталям. Под влиянием легирующих элементов точки 5 (0,8% С) и (2,14% С) диаграммы состояния Ре—С перемещаются влево или вправо (V, Т1, МЬ). Поэтому граница между доэвтектоидными, заэвтектоидными и ледебуритными сталями сдвинута в область меньших (больших) содержаний углерода.  [c.159]

На фиг. 177 показано по А. П. Гуляеву влияние легирующих элементов на твердость и ударную вязкость железа (феррита). Здесь видно, что все легирующие элементы в той или иной степени упрочняют феррит, повышая его твердость. Особенно эффективно в этом отношении действие Л п, 51 и N1. Вместе с тем легирующие элементы оказывают пешающее, но не однозначное влияние на ударную вязкость феррита. Действие 51, и Мо явно отрицательное. Добавка Мп и Сг  [c.276]

Большинство легирующих элементов, растворяющихся в феррите, гювышает его прочность, особенно после закалки и высокого отпуска. Последние опубликованные данные [24, 25] по влиянию легирующих элементов на твердость феррита после медленного охлаждения приведены на фиг. 16. Сравнение свойств феррита, как показано М. М. Штейнбергом, должно производиться при одной и той же ее личине зерна, так как уменьшение зерна феррита повышает его механические свойства. Особенно резко измельчение зерна феррита действует на сопротивление отрыву 5 и критическую температуру хрупкости Т . На твердость и предел прочности влияние величины зерна феррита сказывается меньше. Однако изменение зерна нелегированного феррита с № 1 до № 8 повышает твердость на 30% (до 100 Нд). Предел прочности легирующие элементы повышают примерно на столько же, на сколько они повышают и твердость. Особенно сильно легирующие элементы увеличивают сопротивление малым пластическим деформациям (предел текучести).  [c.30]

Применение сталей этого типа с пониженным содержанием никеля дает значительную экономию. Они обладают очень хорошими механическими свойствами и, прежде всего, высоким пределом текучести, достигающим в исходном состоянии 40 кгс мм (в два раза больше, чем у аустенитных сталей) [237]. Повышенную прочность этих сталей можно объяснить известным влиянием легирующих элементов в аусте-нпте и феррите. Так, например, предел текучести хромистых ферритных сталей повышается с увеличением содержания никеля. Наоборот, в аустенитных сталях никель снижает предел текучести. Учитывая состав обеих фаз [206], которых содержится в сплаве примерно по 50% (табл. 11), можно достигнуть приведенного выше предела текучести. Эти стали непригодны для глубокой вытяжки в холодном состоянии и для деталей, поверхность которых должна иметь высокий блеск. Оптимальные свойства этих сталей достигаются отжигом при температурах от 950 до 1050° С с последующим быстрым охлаждением.  [c.39]

В обобш,енном четвертом случае более высокое значение fl по сравнению с а предопределяет возможность перемещения углерода даже из стали с меньшей концентрацией и образование обезуглероженной и науглероженной зон. Таким образом, задача предотвращения образования рассматриваемой неоднородности в зоне сплавления разнородных сталей сводится к обеспечению в них близких значений термодинамической активности углерода в растворах (aa Осп). Сведения о влиянии легирующих элементов на активность углерода в твердом растворе, приведенные в п. 4, относятся в основном к аустениту, но они позволяют качественно судить о влиянии легирования на активность углерода в феррите. Из этих данных видно, что активность повышают никель и кобальт, а понижают марганец, хром и алюминий. Особенно сильно активность снижает хром, его влияние на понижение активности почти на порядок выше, чем влияние никеля на повышение активности. Поэтому в аустенитной хромоникелевой стали, где хрома содержится больше, чем никеля, активность углерода в аустените оказывается очень низкой. Другие карбидообразующие элементы (вольфрам, молибден, ванадий) также понижают активность углерода в растворе.  [c.299]

Сопоставление приведенных данных говорит о том, что влияние легирующих элементов на феррит и на чугун не всегда однозначно. Более того, влияние даже одного элемента на чугун бывает в различных условиях различным. Объясняется это тем, что влияние хи п1ческого состава на механические свойства чугунных изделий весьма сложно и определяется в первую очередь характером взаимодействия элементов между собой, их легирующим дей-  [c.35]

Легированные феррит и аустенит упрочняются при увеличении содержания в них легирующих элементов. В феррите эффект упрочнения снижается в последовательности углерод + + азот, фосфор, кремний, марганец и т.д., в аустените эффект упрочнения снижается в последовательности углерод, aзof, легирующие элементы. Минимально )Т1рочняют аустенит, никель и марганец. Твердорастворное упрочнение повышает прочность сталей, но главное значение для упрочнения имеет влияние легирующих элементов на получение оптимальной структуры ферритно-карбидной смеси. Растворение легирующих элементов в феррите искажает его кристаллическую решетку и снижает сопротивление хрупкому разрушению. Все легирующие элементы кроме никеля повышают Т . Никель упрочняет феррит, одновременно увеличивает вязкость стали и снижает Т .  [c.26]

Одним из этапов процесса обезуглероживания является диффузия углерода в феррите. Известно, что легирование феррита хромом резко замедляет процессы диффузии в нем элементов внедрения, в частности, углерода. Поэтому можно предположить, что повышение водородостойкости хромистых сталей происходит не только за счет наличия в них стабильных карбидов, но и вследствие влияния хрома, растворенного в феррите, на скорость диффузии углерода. Для проверки этого предооложения были поставлены специальные исследования и определено влияние отдельных легирующих элементов (вольфрама, ванадия, ниобия и титана) на длительную водородную стойкость стали с 0,16 -0,18% С и связь между фазовым составом, механическими свойствами и водородостойкостью сталей под давлением водорода 800 атм при температуре 600.  [c.157]

В сложнолегированной стали влияние элементов, растворенных в феррите, на его прочность может быть велико даже после нормализации и отжига. В улучшенной конструкционной стали значение пределов пропорциональности и текучести при определенном сочетании легирующих элементов может быть удвоено по сравнению с нормализованным и утроено против отожженного состояния. При этом легированный феррит сохраняет еще высокую пластичность и вязкость.  [c.16]


В течение ряда лет кафедра выполняет исследования магнитных материалов, главным образом ферритов. Исследование условий получения магнитных и электрических свойств никелевых, магниевых, магний-марганцевых, литиевых ферритов с присадками окислов редкоземельных элементов, скандия, иттрия, бора, индия, алюминия, висмута, а также анализ их электронно-кристаллической структуры показал, что влияние легирующих ионов заключается в изменении геометрии кристалла в связи с изменением электронно-кристаллической магнитной структуры ферритов (В. А. Горбатюк, канд. физ.-мат. наук Т. Я. Гридасова, П. Лукач, М. Димитрова). Введение 1% окиси скандия или индия в промышленный марганец-цинковый феррит марки 2000 НМ-1 вызывает повышение начальной магнитной проницаемости на 20—30% с одновременным понил ением диэлектрических и магнитных потерь присадки окиси висмута стабилизируют магнитные электрические свойства бариевых изотропных ферритов, а введение в те же ферриты окислов РЗЭ способствует повышению их магнитной инерции на 30—40%.  [c.80]

Некоторые легирующие элементы стабилизируют аустенит, другие — феррит, поэтому добавки таких стабилизаторов аусте-нита, как никель и марганец, должны способствовать сохранению аустенитной матрицы (см. рис. 7.5). Простейшая аустенитная сталь AISI 316 содержит молибден, который, будучи растворен в аустените, способствует увеличению предела ползучести. Пределы ползучести и прочности таких сталей сильно зависят от температуры и времени. Кроме того, в них не наблюдаются реакции, сопровождающиеся выделением других фаз и нежелательным изменением структуры и свойств зон термического влияния сварки.  [c.60]

Все легирующие элементы (за исключением кобальта) увеличивают устойчивость переохлажденного аустенита в области перлитного и бейнитного превращений и на диаграмме изотермического превращения сдвигают вправо, т. е. в сторону большего времени выдержки, кривые начала и конца распада. Причины высокой устойчивости переохлажденного аустенита в области перлитного превращения многие исследователи связывают с тем, что в результате распада легированного аустенита в перлитной области образуются феррит и легированный цементит или специальный карбид. Для образования такой ферритно-карбидной структуры между у-твердым раствором и карбидом должно пройти диффузионное перераспределение не только углерода, но и легирующих элементов. Карбидообразующие элементы переходят в карбиды, а элементы, не образующие карбидов, — в феррит. Замедление распада аустенита в перлитной зоне объясняется малой скоростью диффузии легирующих элементов в аустените и уменьшением скорости диффузии углерода под влиянием карбидообразующих элементов. Кроме того, легирующие элементы уменьшают скорость полиморфного превращения у а, которое находится в основе распада азютенита.  [c.179]

С увеличением содержания углерода и легирующих элементов сопротивление резанию стали увеличивается. Сталь со структ фой пластинчатого перлита имеет наилучшую обрабатываемость. При обработке стали, в структуре которой содержится зернистый перлит, имеющий понРЕженную прочность и повьппенную пластичность, получается повышенная шероховатость. Феррит в виде широких полос также ухудшает качество поверхности. Наиболее плохо обрабатывается сталь со структурой феррит-зернистый цементит. Исключительно сильное влияние на обрабатываемость стали, имеющей ферритную основу, оказывает легирование ее углеродом до 0,5 %. При увеличении содержания углерода количество свободного феррита в отожженной стали постепенно уменьшается, а при содержании углерода, равном 0,5 %, свободного феррита в отожженной стали практически не остается, и поэтому дальнейшее увеличение содержания углерода не оказывает влияния на обрабатываемость, если благодаря отжигу обеспечивается получение зернистого перлита и предотвращается образование цементитной сетки. На обрабатываемость стали, имеющей ферритную основу, сильно влияет содержание кремния значительно слабее влияет на обрабатываемость стали содержание хрома, вольфрама, ванадия и молибдена марганец и никель практически не влияют на обрабатываемость стали. Присадки свинца 0,2-0,5 % улучшают условия резания сталей с высоким содержанием углерода благодаря смазывающему действию дисперсных частиц свинца, расположенных на границах зерен.  [c.262]

Косвенное влияние связано с увеличением концентрации углерода в феррите отпущенной стали. Сильное упрочняющее действие оказывают кремний и карбидообразуюшле элементы, которые затрудняют распад мартенсита и выделение из него углерода в виде дисперсных частиц карбидов. При одинаковой температуре отпуска феррит легированной стали содержит больше углерода, чем феррит углеродистой стали. Чем сильнее выражена склонность легирующего элемента к карбидообразованию, тем позднее выделяется углерод из феррита и сильнее его упрочняющее действие. По степени увеличения косвенного влияния на прочность феррита легирующие элементы располагаются в следующей последовательности Сг, Мо, W, Nb, V, Ti. При совместном легировании упрочняющий эффект возрастает.  [c.259]

Сопротивление коррозии зависит от структуры чугуна и от внешней среды (её состава, температуры, а также передвижения по отношению к металлу). По убывающему электродному потенциалу структурные составляющие чугуна могут быть расположены в такой последовательности графит (наиболее foй-кий) — цементит, фосфидная эвтектика — перлит — феррит. Разность потенциалов между ферритом и графитом составляет 0,56 в. Сопротивление коррозии уменьшается по мере увеличения степени дисперсности структурных составляющих. Чрезмерное уменьшение степени дисперсности графита также снижает сопротивление коррозии из-за уменьшения при этом плотности чугуна. Легирующие элементы влияют на сопротивление чугуна коррозии в соответствии с их влиянием на структуру. Повышенное сопротивление коррозии наблюдается у чугунных отливок с сохранившейся литейной коркой. Скорость коррозии по отношению к разным средам приведена в табл. 8, 9 и 10. Скорость коррозии уменьшается во времени.  [c.185]

Вольфрам — дорогой и дефицитный легирующий элемент. Вольфр.ам растворяется в феррите и с углеродом образует карбиды, повьш1ает критические точки. При растворении в аустени-те вольфрам повышает прокаливаемость стали. Влияние вольфрама на механические свойства сравнительно невелико. Вольфр ам уменьшает рост зерна стали и чувств ителшость к отпускной хрупкости. Поэтому вольфрам в. количестве 0,8—1,2 /о используется как присадка к улучшаемым и цементуемым хро-моникелевьш сталям.  [c.279]


Смотреть страницы где упоминается термин Феррит Влияние легирующих элементов : [c.179]    [c.183]    [c.205]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.331 , c.360 ]



ПОИСК



Влияние легирующее

Легирующие элементы

Ферре

Феррит влияние элементов

Феррит легированный

Ферриты

см Элементы легирующие — Влияние



© 2025 Mash-xxl.info Реклама на сайте