Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура подогрева

Поэтому при проверке пригодности принятого режима и определении температуры подогрева при сварке закаливающихся сталей достаточно использовать результаты стандартных испытаний стали по методике ИМЕТ-1 или валиковой пробы, на основании которых можно получить зависимости изменения конечных механических свойств металла околошовной зоны от скорости охлаждения и длительности пребывания выше Ас . По этим данным можно установить интервал скоростей охлаждения, ограничивающий область частичной закалки стали в зоне термического влияния, и выбрать расчетное значение по допускаемому проценту мартенсита в структуре и благоприятному сочетанию механических свойств.  [c.233]


Кроме обще о подогрева, применяемого при полугорячей сварке различными способами, в ряде случаев, когда жесткость изделия сравнительно невелика, можно ограничиться местным подогревом до иу кной температуры. В процессе сварки необходимо обращать внимание па то, чтобы изделие в районе сварки не охлаждалось ниже заданной температуры подогрева.  [c.333]

Рис. 2.35. Зависимость относительной температуры подогрева 0 (а) и охлаждения 0 (б) масс газа от температуры на входе Рис. 2.35. Зависимость <a href="/info/276556">относительной температуры</a> подогрева 0 (а) и охлаждения 0 (б) <a href="/info/251437">масс газа</a> от температуры на входе
Свариваемость — сварка с подогревом при толщине стенки более 16 мм температура подогрева 200 С. Метод сварки РДС, АДС под флюсом и в защитных газовых средах. Рекомендуется последующий отпуск при 600—650 С для снятия напряжений [81 ].  [c.598]

Разновидностью сварки давлением, близкой по физической сущности к холодной сварке, является термокомпрессионная сварка, которая отличается от холодной сварки тем, что место соединения подогревают до температур, ниже температур образования жидких фаз, а затем сжимают. Основными параметрами процесса являются усилие сжатия, температура подогрева и продолжительность выдержки.  [c.116]

Подогрев является наиболее радикальным способом регулирования скорости охлаждения и его используют, когда регулированием режимов сварки и специальными технологическими приемами не удается обеспечить требуемую скорость охлаждения и структуру сварного соединения. Чем выше содержание углерода и легирующих элементов, тем выше температура подогрева.  [c.125]

В зависимости от температуры подогрева сварку чугуна разделяют на следующие виды  [c.130]

Существует много методов экспериментального определения температур [И]. Рассмотрим лишь те, которые используют при сварке. Один из простейших методов состоит в использовании индикаторов температуры, например, термокрасок или термокарандашей. Некоторые термокраски меняют цвет непрерывно (в диапазоне 400...700 К) и позволяют наблюдать положение изотермических линий. Другие краски резко меняют свой цвет при определенной температуре и сохраняют его в дальнейшем. Существуют краски для диапазона температур 300... 1800 К с од-H0-, двух-, трех- и четырехкратным изменением цвета при различных температурах. Термокарандаши изготовляют для диапазона 340...950 К с градацией в 50...80 К. Нанося различными термокарандашами риски, как мелом, можно быстро определить распределение температур по изменению цвета, например зеленого в коричневый, голубого в бежевый и т. д. С их помощью можно определить размеры зоны, нагретой до определенной температуры, момент времени, при котором достигается заданная температура. Этот метод удобен также для определения температуры подогрева перед сваркой. Точность измерения составляет несколько кельвин. Подробные сведения о цветовых индикаторах температуры, основанных на различных химических и физических явлениях, можно найти в работе [1].  [c.203]


Знак минус в уравнениях (7.18) и (7.19) показывает, что происходит остывание металла. Скорость охлаждения зависит от формы изделия (массивное тело, пластина), эффективной погонной энергии д/и и температуры подогрева Т .  [c.214]

Температура подогрева практически позволяет в большей степени регулировать скорость охлаждения, чем эффективная погонная энергия. Однако при сварке крупных, деталей нагрев приходится ограничивать по соображениям облегчения условий труда.  [c.214]

Определяем температуру подогрева, обеспечивающую скорость охлаждения —25 К/с, используя формулу (7.18)  [c.214]

Скорость охлаждения первого слоя уменьшается с увеличением сечения слоя, т. е. с увеличением погонной энергии, температуры подогрева а с уменьшением толщины материала 6. Наиболее сильно влияет на скорость охлаждения температура подогрева Т .  [c.218]

Температура 7 , до которой охлаждается первый слой, зависит, в частности, от длины завариваемого участка /, погонной энергии сварки q/v и температуры подогрева 7 . Выразим связь между перечисленными параметрами. Б качестве расчетной схемы примем схему мгновенного выделения теплоты на завариваемом участке / в начальный момент сварки при этом также примем, что теплота выделяется равномерно по толщине металла б, распространяется только в направлении у и теплоотдача отсутствует (рис. 7.11). Иными словами, принимается схема линейного быстродвижущегося источника теплоты в пластине. Выбранная схема не учитывает ряда особенностей распространения теплоты, однако может быть принята для расчета по следующим соображениям. Температура как указывалось выше, не превышает, как правило, 650 К. Когда околошовная зона охладится до 500...600 К, то температура по сечению успевает выравняться, и поэтому несущественно, какое распределение теплоты принято в начальный момент времени.  [c.219]

Мгновенная производительность расплавления электрода в =wfp при постоянных т)з и t/ зависит от температуры подогрева током и силы тока  [c.227]

Более совершенен расчет стойкости сварных соединений против образования XT, основанный на сопоставлении действительного структурно-водородного и напряженного состояния с критическим. Такой расчет на ЭВМ по программе, включающей решение тепловой задачи, расчет структуры, распределения диффузионного водорода, сварочных напряжений выполняется в соответствии с зависимостями (13.2)...(13.4), (13.11), (13.12). Программа позволяет оценить выбранные материалы, конструктивный и технологический варианты изготовления сварных узлов. С помощью программы могут быть составлены технологические карты свариваемости, наглядно иллюстрирующие развитие физических процессов, ответственных за образование трещин, в зависимости от температуры подогрева ТП. Карты позволяют определить необходимую температуру подогрева и допустимое  [c.537]

Для расчета скорости сварки необходимо установить, имеют ли свариваемые стали ограничения по скоростям охлаждения в зоне термического влияния. Если сталь склонна к закалке и к перегреву в зоне термического влияния, то для данной стали определены нижний и верхний диапазоны скоростей охлаждения (табл. 1.5). Эти диапазоны являются характеристиками сталей. По допустимому диапазону скоростей охлаждения по одной из трех формул (1.1), (1.2) или (1 4) в зависимости от толщины соединяемых листов рассчитывается оптимальный диапазон погонных энергий. При этом нижним значениям скоростей охлаждения соответствует максимальное значение погонной энергии, а верхним — минимальное. Температуру подогрева Тд в формулах (1.1)—  [c.36]

Задача 2.2. В топке котла сжигается малосернистый мазут состава С" = 84,65% Н =11,7% Sp = 0,3% 0 = 0,3% л = 0,05% = 3,0%. Определить располагаемую теплоту, если температура подогрева мазута t = 93° и энтальпия пара, идущего на распыливание топлива паровыми форсунками, г ф = 3280 кДж/кг.  [c.37]

Определить располагаемую теплоту в кДж/кг и теплоту, полезно использованную в котлоагрегате в процентах, если известны температура подогрева мазута / = 90°С, натуральный расход топлива 5=0,527 кг/с, давление перегретого пара Ра.а = = 1,3 МПа, температура перегретого пара /п п=250°С, температура питательной воды 100°С и величина непрерывной продувки Р=4%.  [c.38]


Задача 2.9. В топке котла сжигается малосернистый мазут состава С = 84,65% Н =11,7% 8 = 0,3% 0 = 0,3% = 0,05% W = 3,0%. Определить в кДж/кг и процентах потери теплоты с уходящими газами из котлоагрегата, если известны коэффициент избытка воздуха за котлоагрегатом Оух=1,35, температура уходящих газов на выходе из последнего газохода 0yi=16O° , температура воздуха в котельной /, = 30°С, средняя объемная теплоемкость воздуха при постоянном давлении Сл,= = 1,297 кДж/(м К) и температура подогрева мазута /т = 90°С.  [c.39]

Задача 2.25. Определить кпд котельной установки (нетто), если известны кпд котлоагрегата (брутто) > р=89,6%, расход топлива 5 = 0,334 кг/с, расход пара на собственные нужды котельной /)с. = 0,012 кг/с, давление пара, расходуемого на собственные нужды, / с.н = 0,5 МПа и температура питательной воды /дв=120°С. Котельный агрегат работает на высокосернистом мазуте с низшей теплотой сгорания горючей массы 2 и = 40 090 кДж/кг, содержание в топливе золы А = 0,1% и влаги = 3,0%. Температура подогрева мазута , = 90°С.  [c.47]

Задача 2.31. Определить объем топочного пространства, предназначенного для вертикально-водотрубного котла паропроизводительностью Z)=13,8 кг/с, при работе на малосернистом мазуте состава С = 84,65% Н =11,7% S5 = 0,3% О =0,3% = 0,05% W = 3,0%, если известны температура подогрева мазута т = 90°С, давление перегретого пара — МПа, температура перегретого пара = 250°С, температура питательной воды /п.в=100°С, кпд котлоагрегата (брутто) а = 88% величина непрерывной продувки Р=3% и тепловое напряжение топочного объема 2/Иг = 490 кВт/м .  [c.50]

Задача 2.53. Определить лучевоспринимающую поверхность нагрева топки котельного агрегата паропроизводительностью D=13,8 кг/с, работающего на высокосернистом мазуте состава С = 3,0% Н =10,4% S = 2,8% 0 = 0,7% Л = ОД% W" = 3Vo, если известны температура подогрева мазута /т = 90°С, кпд кот-лоагрегата (брутто) = 86,7%, давление перегретого пара Ра.п = = 1,4 МПа, температура перегретого пара пп = 250°С, температура питательной воды = 100°С, величина непрерывной продувки Р — Ъ%, количество теплоты, переданное лучевоспринимающим поверхностям бл = 17 400 кДж/кг, теоретическая температура горения топлива в топке в-, = 2Ю0°С, температура газов на выходе из топки в1= 1100°С, условный коэффициент загрязнения = 0,55, степень черноты топки а-, = 0,529 и расчетный коэффициент, зависящий от относительного местоположения максимума температуры в топке, Л/=0,44.  [c.67]

Задача 2.69. Определить энтальпию воды на выходе из экономайзера котельного агрегата паропроизводительностью Z)=13,8 кг/с, работающего на высокосернистом мазуте состава С = 83% Н =10,4% 85 = 2,8% 0" = 0,7% v4" = 0,l% Ц = 3,0%, если известны температура подогрева мазута /т = 90°С, давление перегретого пара />п.п=1,4 МПа, температура перегретого пара /пл1 = 280°С, температура питательной воды 100°С, кпд котло-агрегата (брутто) р=88% величина непрерывной продувки Р=3% и количество теплоты, воспринятое водой в экономайзере, 2э = 3100 кДж/кг.  [c.76]

Основные характеристики и классификация котлоагрегатов. Основными характеристиками котлоагрегатов являются паропроизводитель-ность (для водяных парогенераторов) или тепловая мощность (для теплогенераторов ВТ и парогенераторов ВТ, работающих на высокотемпературных теплоносителях), параметры теплоносителей на входе и выходе из котлоагрегата, температура подогрева воздуха, поступающего в топку,  [c.277]

Для качественного распыливания и надежной транспортировки жидкого топлива по трубопроводам его вязкость не должна превышать 2—3 °ВУ. Для выполнения этого условия необходим предварительный подогрев топлива. Температура подогрева мазута зависит от его марки и составляет 80—140 °С.  [c.27]

Рекомендуемые значения температуры подогрева воздуха  [c.114]

Температура подогрева смеси резко повышает скорость пламени, что видно из рис. 17-7. На практике этим свойством широко пользуются для увеличения скорости горения, подогревая воздух и газ перед смешением. Скорость распространения пламени для технических газов определяют по формуле  [c.231]

Сжигание топлива в пылевидном состоянии требует обязательного подогрева воздуха, необходимого для горения, как для обеспечения надлежащей сушки топлива, так и для создания лучших условий его сжигания. Также подогревают воздух и при сжигании мазута и газа под крупными котлами. Без подогрева воздуха можно обходиться только при сжигании мазута и природного газа под котлами небольшой производительности. Температура подогрева воздуха в зависимости от рода сжигаемого топлива и других причин может колебаться в пределах от 250 до 420° С.  [c.281]

На рис. 6.6 изображены схема такого ГТД и его цикл в диаграмме S—Т. Линии 3—4 и 3 —4 соответствуют процессу расширения в турбине высокого давления Т1 и турбине низкого давления Т2, линия 4 —3 — процессу подвода теплоты к рабочему телу во второй камере сгорания КС2 при постоянном давлении. Обычно температуру подогрева Т з принимают равной начальной температуре газа Гд.  [c.191]

Разогрев всей массы нефтепродукта G от начальной температуры до температуры подогрева т. е.  [c.251]

Сложнее обстоит дело с твердыми сортами топлива. Самым молодым среди них является древесное, в котором содержится около 43 % собственного кислорода. Столь окисленная горючая масса уже не в состоянии выделить много теплоты при своем дальнейшем окончательном окислении в процессе горения. Однако, как бы в качестве компенсации, она обладает определенным преимуществом — легко воспламеняется. Причем, чем больше собственного кислорода содержит топливо, т. е. чем более окислены его первичные углеводородные молекулы, тем легче они распадаются при сравнительно низких температурах подогрева. Например, распад древесины, ее газификация начинаются при температурах более низких, чем при перегреве паров жидкого топлива. Другими словами, древесина, не обладающая способностью плавиться, как и все достаточно окисленные углеводороды, легко газифицируется при нагреве за счет термического разложения еще в твердом состоянии.  [c.179]


Если сталь перед сваркой подвергают термообработке, но после сварки отпуск певозможен из-за крупных размеров конструкции, то сталь данной марки можпо использовать для изготовления такой конструкции только в том случае, если не предъявляется жестких требований к равнопрочности сварного соеди-иеиия и основного металла в условиях статического нагружения. Для обеспечения свойств сварного соединения, гарантирующих требуемую его работоспособность, критерием необходимой температуры подогрева будет диапазон скоростей охлаждения Аи опт, обеспечивающий необходимый уровень механических свойств в околошовной зоне.  [c.251]

Радикальная мера предотвращения трещин — применение предварительного и сопутствующего сварке подогрева. Обычно для хромистых сталей мартеиситпого и мартеиситпо-ферритных классов рекомендуется общий (или иногда местный) подогрев до температуры 200—4Г)0° С. Температуру подогрева повышают с увеличением склонности к закалке (в основном с увеличением концентрации углерода в стали) и жесткости изделия. Однако возможно и даже предпочтительней не нагревать металл до температур, вызывающих повышение хрупкости, например в связи с сн-иеломкостью, и ограничивать температуру сопутствующего сварке подогрева.  [c.267]

Так, для стали 08X13 такой температурой оказывается 100— 120° С. Соответственно могут быть ограничены и температуры подогрева для других сталей, иапример 12X13, 20X13. Верхний предел сопутствующего подогрева следует ограничивать переходом стали к отпускной хрупкости или синеломкости, т. е. температурой для различных сталей в интервале 200—250 С. При любом виде сопутствующего подогрева чрезвычайно опасны резкие охлаждения ветром или сквозняками, так как при этом весьма вероятно появление трещин.  [c.267]

Пример 4. Режим сварки на поверхности массивного тела из низколегированной стали подобран из условия качественного формирования шва и характеризуется следующими параметрами / = 400 Л, t/ = 38B, и = 18 м/ч = 0,5 см/с, т) = 0,8. Требуется определить мгновенную скорость охлаждения металла при Т = 920 К и в случае, если она выше 25 К/с, определить температуру подогрева Г , обеспечивающую указанную скорость охлаждения. Теплофизические коэффициенты стали а = 0,08см /с, Х,= 0,38 Вт/(см К), ср= 4,8 Дж/(см -К).  [c.214]

Для ст ая действия точечного источника на поверхности плоского слоя помимо приведенных форм> л разработаны также номогораммы, позволяющие определить скорости охлаждения в зависимости от погонной энергии сварки Я1я различных толщин металла и предварительной температуры подогрева изделия, либо провести обратно ю процедуру — по заданным диапазонам скроетей охлаждения определить оптимальные значения погонной энергии сварки Данные номограммы представлены на рис 1.12//—д.  [c.29]

Задача 2.35. Определить тепловое напряжение топочного объема камерной топки котельного агрегата паропроизво-дительностью D = 2,5 кг/с, если известны давление перегретого параРа.а= А МПа, температура перегретого пара п.п = 250°С, температура питательной воды Гп.а = Ю0°С, кпд котлоагрегата (брутто) j a = 90%, величина непрерывной продувки Р=4% и объем топочного пространства F = 24 м . Котельный агрегат работает на высокосернистом мазуте с низшей теплотой сгорания горючей массы Ql=40 090 кДж/кг, содержание в топливе золы /1 =0,1 % и влаги = 3%. Температура подогрева мазута /, = 90 С.  [c.52]

Ступенчатая линия I-2-3-4-5-6 (рис. 135, а) представляет собою ли- нию расширения пара в трубине и отдачу теплоты в подогревателях. Пл. S 5432J определяет удельную теплоту, израсходованную на подогрев питательной воды в подо1 ревателях. За счет отбора теплоты от рясширяющегося пара можно в пределе получить конечную температуру подогрева воды, равную температуре насыщения (точка 8). Тор-  [c.322]

Проведем другой опыт. Будем смешивать струю горючего газа си струей воздуха, подогревая раздельно эти струи. Постёпенно повышая температуру подогрева,, мы увидим, что при некоторой температуре произойдет воспламенение смеси, а затем смесь будет гореть. Минимальную температуру, при которой смесь воспламеняется, называют температурой воспламенения. Она не является физико-химической постоянной величиной, Так как зависит от условий опыта (от пропорции между газом и окислителем и от потерь в окружающую среду). Значения температуры воспламенения для некоторых газов приведены в табл. 17-1. Из таблицы видно, что наиболее высокой она является для метана. Не обязательно подогревать весь объем смеси можно нагреть от постороннего высокотемпературного источника (от небольшого факела или от искры) небольшой объем смеси. Произойдет вынужденное зажигание смеси, д ре> зультате чего реакциями будет охвачен весь объем благодаря распрост." ранению пламени, но не мгновенно, а с некоторой объемной скоростью.  [c.229]

В современных котельных агрегатах воздухоподогреватель размещают либо полностью за водяным экономайзером, либо в рассечку с водяным экономайзером. В этом случае вначале по ходу газов располагают первую часть экономайзера, затем верхнюю часть воздухоподогревателя, под которой размещают вторую часть экономайзера, а еще ниже— нижнюю часть воздухоподогревателя. Такое расположение низкотемпературных поверхностей нагрева позволяетшолучить более высокую температуру подогрева воздуха (до 360—400°С). Температура дымовых газов за воздухоподогревателем обычно составляет 130—170° С.  [c.299]

Одна из важнейших характеристик мазута — его вязкость, которая сильно изменяется при изменении температуры. Для сжигания применяют мазуты марок Ф5, Ф12, М40, М100, М200 (ГОСТ 10585—75). Марка характеризует вязкость мазута в условных градусах, которую он имеет при 50° С. Транспортабельные свойства, а также температура подогрева мазутов перед распылива-нием зависят от их вязкости. Например, чтобы осуществить распыливание механическими форсунками, мазуты необходимо подогреть до такой температуры, при которой вязкость их достигнет 3,5—6° ВУ (условных градусов).  [c.101]

Для осуществления взаимодействия по схеме 2) необходимо создать на поверхности металла реакционный слой в виде непроницаемой сплошной пленки, состоящей из окисла или окисного соединения, прочно соединенного с основой, и обладающей химическим сродством к осаждаемому материалу. Удовлетворительной прочностью связи с металлической основой обладает ограниченное число компактных окислов, например N10, СгзОз, А12О3, ЗЮа, некоторые окислы низшей валентности, например ГеО, М0О2 и др., а также субокислы. Низшие окислы и субокислы образуются и существуют в узком интервале температур. Поэтому при выборе температуры подогрева подложки необходимо учитывать кинетику окисления металла пли сплава, чтобы осуществить намеченную схему взаимодействия.  [c.94]

Для контроля и регулирования температуры подогрева в рабочей зоне индентора помещается спай платинородий-платиновой термопары. Токопод-воды нагревателя изготовлены из гибких медных шин и электрически изолированы фарфоровыми бусами. Через водоохлаждаемый вакуумный ввод в крышке рабочей камеры и резьбовые разъемы эти шины соединены с источником напряжения (подводимого от однофазного трансформатора).  [c.166]


Смотреть страницы где упоминается термин Температура подогрева : [c.243]    [c.313]    [c.182]    [c.540]    [c.196]    [c.322]    [c.85]    [c.175]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Вода для предельная температура подогрев

Вода питательная экономическая температура подогрева

Воздух Температура подогрева для вагранок

Жидкое топливо Рекомендуемые температуры подогрева мазута для перекачки и рекомендуемые температуры перед форсунками

Наивыгоднейшая температура подогрева питательной воды

Подогрев воздуха перед котлом, рекомендуемая температур

Предварительный подогрев стыков при сварке в условиях низких температур

Процесс Температура подогрева заряда

СО-100 для подогрева

Температура воды питательно подогретой

Температура плавкости золы подогрева воды

Температура подогрева воды

Температура подогрева воздуха и горючего газа

Температура подогрева заряда

Температура подогрева мазута

Температура подогрева стыков

Температура подогрева стыков труб при сварке

Температура подогрева шихты для электропече

Температура подогрева, контроль

Температура регенеративного подогрева питательной воды

Температура регенеративного подогрева теоретически наивыгоднейшая

Температура сопутствующего подогрева

Температуры закалки и отпуска подогрева стали перед резкой

Экономическая температура подогрева питательной воды



© 2025 Mash-xxl.info Реклама на сайте