Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы Дефектоскопия магнитная

Магнитные и электрические методы дефектоскопии. Магнитные методы контроля качества продукции применяются для обнаружения поверхностных и скрытых дефектов в материалах, обладающих положительной магнитной восприимчивостью. Магнитные методы дефектоскопии основаны на свойстве металла быстро намагничиваться и размагничиваться или создавать разную магнитную индукцию в местах дефекта. Поэтому наиболее успешно эти методы применяются для ферромагнитных материалов с большой магнитной проницаемостью и менее — для парамагнитных тел, так как в этом случае магнитное насыщение наступает в полях чрезвычайно большой напряженности. Материалы с отрицательной магнитной восприимчивостью не подвергаются магнитным методам контроля.  [c.258]


Для контроля и исследования качества слитков металла, проката, литья, поковок, штамповок и т. п. без их разрушения, современная техника вооружает контролеров такими средствами, как рентгено-дефектоскопия, магнитная дефектоскопия, ультразвук, и наконец, метод радиоактивных изотопов и ядер-ных излучений. Все эти средства открывают целую область неразрушающих физических методов контроля.  [c.48]

Если поверочный расчет по [Л. 50] показывает, что мостики между отверстиями после рассверловки обеспечивают достаточную прочность, барабан может быть допущен к эксплуатации. Если же выборка трещин ослабила мостики и прочность их оказывается недостаточной, следует произвести подварку расточенных отверстий. Для подварки используют электроды УОНИ 13/45. При подварке применяется предварительный и сопутствующий подогрев до 150—200° С. После подварки проводится отпуск при 650° С с выдержкой 5 ч. Затем отверстие растачивают до заданного диаметра, а внутреннюю поверхность барабана шлифуют переносным шлифовальным кругом. Наплавленный металл проверяется магнитной дефектоскопией на отсутствие трещин, несплавлений и шлаковых включений.  [c.349]

Для подварки используют электроды УОНИ 13/45. При подварке применяют предварительный и сопутствующий подогрев до 150—200 °С. После подварки проводят отпуск при 650 °С с выдержкой 5 ч. Затем отверстие растачивают до заданного диаметра, а внутреннюю поверхность барабана шлифуют переносным шлифовальным кругом. Наплавленный металл проверяют магнитной дефектоскопией на отсутствие трещин, несплавлений и шлаковых включений.  [c.106]

Методы изучения структур металлов. Исследованием структур металлов и их сплавов определяется пригодность их к эксплуатации в различных условиях работы. К важнейшим методам исследования относят макро- и микроанализ, рентгеновский и термический анализ, а также дефектоскопию магнитную, ультразвуковую, при помощи радиоактивных изотопов.  [c.12]

При магнитной дефектоскопии применяют сварочный трансформатор, вторичную обмотку которого продевают через отверстия вынутых заклепок (фиг. 206) и замыкают накоротко, причем ток во вторичной обмотке будет 1300—1600 а при напряжении 3—6 в. При пропускании по обмотке тока в металле образуется магнитное поле и, если посыпать стенку магнитным порошком или опрыскивать ее магнитной суспензией, то по краям трещины образуются скопления порошка в точности следуя направлению трещины, даже в том случае, если она не выходит на поверхность.  [c.290]

Магнитные и электромагнитные методы основаны на измерении изменения магнитных силовых полей и напряженности магнитного, поля при наличии дефектов, а также изменения магнитных свойств материала под действием внешних сил. Магнитные методы используются в магнитной порошковой дефектоскопии, которая основана на том, что наличие дефекта в намагниченном металле выявляется магнитным полем рассеяния ферромагнитных частиц вокруг дефекта. Эти методы контроля являются простыми н надежными для обнаружения трещин и других дефектов на поверхности металла и на небольшой глубине от нее. Магнитные методы могут быть использованы для определения напряжений. Они основаны на том, что при деформации ферромагнитных материалов под действием внешних сил изменяются их Магнитные свойства. Для каждого испытываемого материала устанавливается зависимость между его магнитной проницаемостью и изменением напряжения  [c.214]


Чувствительность метода порошковой дефектоскопии может в некоторых случаях оказаться настолько высокой, что магнитный рисунок может появляться не только при наличии макродефектов, но и за счет неоднородности микроструктуры, а также из-за неоднородности металла в магнитном отношении, например как следствие концентрации напряжения. Это положение может иногда привести к неправильным заключениям о качестве проверяемого изделия, т. е. к обнаружению лож-ньих дефектов.  [c.22]

Магнитная дефектоскопия. Магнитную дефектоскопию применяют для контроля деталей из металлов, которые могут быть намагничены. Этот метод позволяет обнаружить усталостные и закалочные трещины, волосовины, включения и другие пороки металла, выходящие на поверхность. Сущность метода заключается в следующем. Деталь намагничивают. При наличии на ее поверхности трещины процесс намагничивания сопровождается (вследствие изменения магнитной проницаемости) концентрацией магнитных силовых линий на заостренных кромках трещины и образованием в этих местах магнитных полюсов. Если на такую деталь нанести ферромагнитный порошок, то под действием сил магнитного поля частицы порошка будут скапливаться и удерживаться на том месте, где трещина выходит на поверхность. Частички порошка будут как бы обрисовывать контур трещины, т. е. показывать ее месторасположение, форму и длину.  [c.50]

Электроконтактный способ целесообразно применять в качестве дополнительного при визуальном осмотре, контроле методами цветной и магнитно-порошковой дефектоскопии для расшифровки данных о дефектности металла, полученных с применением перечисленных методов [7].  [c.37]

Ультразвуковую дефектоскопию ответственных сварных швов выполняют для выявления в металле шва различных технологических и эксплуатационных дефектов типа несплошностей (для поиска усталостных трещин возможно также применение магнитных методов).  [c.109]

Люминесцентный дефектоскоп применяется для выявления трещин, раковин и расслоений в деталях магнитных и немагнитных металлов, из цветных сплавов, а также неметаллических материалов (из пластмасс). Им следует пользоваться для контроля деталей, которые вследствие своей формы трудно поддаются намагничиванию (внутренние поверхности цилиндров, колец и пружин), л также деталей с черной и грубой поверхностью.  [c.304]

Метод порошковой магнитной дефектоскопии не универсален — он пригоден только для проверки качества деталей, изготовленных из ферромагнитных металлов. Возможности выявления дефектов методом магнитной порошковой дефектоскопии  [c.259]

При применении магнитных приборов для измерения толщины стенок изделий достигается значительно большая точность измерения, чем при использовании метода просвечивания и ультразвука. Толщина стенок изделия из ферромагнитных металлов может быть определена по изменению магнитного потока в сердечниках измерительных элементов дефектоскопов. Величина этого потока зависит от толщины контролируемого металла, поэтому стрелка гальванометра прибора будет отклоняться также пропорционально толщине.  [c.261]

К магнитным методам испытаний металлов относятся 1) магнитная дефектоскопия 2) магнитный анализ 3) магнитные измерения 4) испытания готовых магнитов.  [c.171]

Магнитная лаборатория. Магнитные испытания заключаются в определении дефектов с помощью магнитной дефектоскопии и в магнитном анализе структуры и свойств металлов.  [c.373]

Магнитная дефектоскопия. Раньше для проверки наличия скрытых трещин в металле паровых котлов применялся главным образом метод шлифовки и травления. При этом исследуемую поверхность металла тщательно зачищали, шлифовали и протравляли химическими реактивами (90 г хлорной меди, 120 м.л концентрированной соляной кислоты на 100 мл воды 5 мл азотной концентрированной кислоты на 95 мл этилового или метилового спирта 10 г персульфата аммония на 90 мл воды и др.). Однако такой метод выявления трещин в смонтированных паровых котлах крайне неудобен, так как для его осуществления необходима шлифовка исследуемых поверхностей металла на мало доступных участках.  [c.359]


При магнитной дефектоскопии металла паровых котлов обычно применяется водная магнитная суспензия. Для получения такой суспензии сначала приготовляется мыльный раствор олеинового мыла (можно ядрового или хозяйственного, но хорошего качества) — из расчета 15—20 г мыла на 1 л суспензии. Воду необходимо предварительно прокипятить. Мыло растворяют в горячей воде в приготовленный мыльный раствор вводится магнитный порошок — 50— 60 г на 1 л суспензии полученная масса тщательно перетирается в ступке. После этого в нее добавляют необходимое количество воды  [c.360]

Для выявления трещин из барабана во время ремонта удаляют все внутрибарабанные устройства, очищают металл около отверстий шлифовальными кругами, проводят внешний осмотр и выполняют магнитную порошковую дефектоскопию. При внешнем осмотре до шлифовки трещины могут быть обнаружены по валику окислов, выступающему из них.  [c.77]

При внешнем осмотре трещины на внутренней поверхности барабана часто легко обнаруживаются по образующимся над ними валикам окислов. В сомнительных случаях прибегают к магнитной или ультразвуковой дефектоскопии, а также к зачистке металла с последующим травлением. Трещины около вальцовочных соединений на наружной поверхности барабанов обнаруживают по подтекам, которые образуются от просочившейся, а затем испарившейся котловой воды.  [c.352]

Контроль выполняется стационарными и переносными универсальными и специализированными дефектоскопами. В качестве частиц используются магнитные и магнитно-люминесцентные порошки и пасты. Работа проводится в несколько этапов. На первом этапе осуществляется подготовка детали или узла к контролю. Далее, в порядке очередности, следуют намагничивание нанесение порошка или суспензии, осмотр, отбраковка дефектов, размагничивание. При подготовке к МПД поверхность металла должна быть очищена от отслаивающейся окалины, грязи, масла, иногда лакокрасочных покрытий и т.д.  [c.156]

В сомнительных случаях осмотренные участки зачищаются и протравляются, а также подвергаются магнитной или ультразвуковой дефектоскопии с целью определения наличия трещин по причине графитизации. Если при обследовании обнаружены вкрапления графита в металле, то материал обследования передается на рассмотрение специальной комиссии, которая должна дать свое заключение о возможности дальнейшей работы детали или о мерах исправления ее структуры, а также о сроках следующего осмотра дефектной детали.  [c.269]

В 1949 г. при гидравлическом испытании одного из ранее установленных котлов НЗЛ с клепаными барабанами была обнаружена трещина в трубной решетке нижнего барабана. После заварки трещины котел был вновь подвергнут гидравлическому испытанию, при котором была замечена незначительная течь в месте пересечения переднего продольного заклепочного Ш ва с заклепочным швом днища этого барабана. При подчеканке была обнаружена волосная трещина в наружной накладке шва. Во время удаления нескольких заклепок в поврежденном месте для проведения магнитной дефектоскопии отломился край накладки (рис. 35). Общий вид отломившегося куска накладки с указанием мест, из которых взяты пробы металла для исследований, дан на рис. 36. Кроме основной трещины по линии излома на куске накладки были найдены дополнительные трещины, идущие от заклепочных отверстий. В местах излома металл на части толщины имел темный цвет, что указывало на наличие старых трещин. Микрошлиф показал межкристаллитный характер мелких трещин, идущих параллельно или под углом к основной трещине. Магнитной дефектоскопией были обнаружены также трещины в правом поперечном шве барабана (см. рис. 35). На этом же рисунке показано несколько заклепок, удаленных из дефектных участков шва они имеют смещенную форму головок, что является результатом неправильного изготовления шва.  [c.90]

Физические методы контроля качества металлов (дефектоскопия) являются методами контроля изделий без их разрушения. Наибольшее распространение получили следующие методы просвечивание рентгеновы ми и у-лучами , магнитный, люминесцентный и ультразвуковой методы, магнитная толщеметрия. Несколько меньше распространены электроиндуктивный, термоэлектрический и другие методы.  [c.287]

Изменения в слоях металла толщиной менее 5 мкм не улавливаются рентгеноанализом. В этих случаях поверхностный слой исследуют методом структурной электронографии, основанным на дифракции электронов, позволяющим исследовать строение тончайшего поверхностного слоя различных материалов. Микротрещины в поверхностном слое определяют различными методами дефектоскопии (магнитной суспензии, магнитной индукции, ультразвуком, флюоресценции).  [c.134]

УЗД типа икгазсап обнаруживает любые дефекты диаметром более 10 мм и глубиной более 1,5 мм и обеспечивает точность измерений 0,5 мм (по глубине) для дефектов диаметром более 20 мм и глубиной более 1 мм. При этом в случае внутреннего дефекта подразумевается глубина его залегания. Разрешающая способность приборов зависит от характера дефектов. Например, УЗД определяет все размеры дефектов металла трубы, а магнитный дефектоскоп — только их глубину. Таким образом, УЗД соединительных трубопроводов, транспортирующих сероводородсодержащие среды, имеет преимущество перед магнитной дефектоскопией, поскольку наряду с поверхностной коррозией позволяет выявлять дефекты металла труб.  [c.96]

Неферромагнитную проволоку, особенно проволоку из тугоплавких металлов, проверяют дефектоскопами ти-иов ВД-ЮП, ВД-20П, ВД-21 П. Структурная схема этих приборов, так же как и более универсального прибора ВД-23П (рис. 73), отличается от схемы, показанной на рис. 65, наличием усилителя огибающей, фильтра и блока распознавания вида дефекта, включенных последовательно между выходом амплитудного детектора и индикатором, в качестве которого используются счетчики суммарной протяженности длинных дефектов (типа расслоев в вольфрамовой проволоке) и числа коротких дефектов, превышающих пороговый. Благодаря применению измерительного преобразователя скорости перемотки проволоки результаты контроля не зависят от вариации скорости перемотки. Приборы снабжены осциллографическим индикатором, имеют выход для подключения самописца и выход информации в двоично-десятичном коде для сопряжения с ЦВМ. Они позволяют контролировать проволоку в изоляции и под слоем графитового смазочного материала. Для дефектоскопии ферромагнитной проволоки применяется подмагничи-вание постоянным магнитным полем.  [c.143]


Рассмотрены дефекты металла оборудования, технология его дефектоскопии и толщииометрии приспособления, повышающие надежность,. достоверность и производительность дефектоскопии. Описаны основы визуального, визуально-оптического, радиационного, ультразвукового, магнитного и капиллярного методов дефектоскопии и аппаратура, применяемая в горной промышленности. Освещены наиболее важные способы организации работ и техника безопасности при проведении дефектоскопии.  [c.151]

Магнитно-порошковая дефектоскопия основана на обследовании магнитного сопротивления шва или металла цельной детали. При наличии дефектов искажается форма магнитного поля, создаваемая мелким порошком окиси железа (окалина Fe204 или крокус Fe Og, частично восстановленные при температуре 800° С). На деталь накладывают сверхчувствительную фотобумагу, на которую насыпают ровный тонкий слой порошка и помещают в поле сильного соленоида постоянного тока, порошок опрыскивают быстросохнущим прозрачным лаком (цапонлак и др.), затем бумагу освещают сильным светом и проявляют. На бумаге создается картина магнитного поля, на которой определяется наличие или отсутствие дефектов.  [c.215]

Дефектоскопия и вихревые токи. Практически в дефектоско ПИИ используются вихревые токи с частотой до 1 млн. Гц, позволяющие обнаруживать мельчайшие поверхностные дефекты, а также определять структуру металлов, изменение их электропроводности, магнитные свойства и другие характеристики. При помощи дефектоскопов, работающих на использовании вихревых токов, можно контролировать качество цветных, немагнит-  [c.260]

Несомненно, что надежность и долговечность каждой детали во многом зависят от ее качества, наличия трещин, пустот, рыхлостей и других аналогичных дефектов в детали, от свойств металла, качества термообработки, толщины покрытий, неоднородности металла по сечению, наклепа и внутренних напряжений. Для ознакомления с методами неразрушающего контроля материала, выявления перечисленных дефектов и оценки свойств деталей студентам предлагается выполнить лабораторную работу Изучение конструкций и областей применения дефектоскопов в целях повышения надежности изделий . При выполнении данной работы студенты изучают конструкции и принципы действия электро-индуктивного дефектоскопа ЭМИД-4М, люминесцентного дефектоскопа типа ЛД-4, импульсного ультразвукового эходефектоскопа типа УДМ-1М и магнитного дефектоскопа типа ДМП-2, а также с помощью указанных приборов производят ряд экспериментальных исследований.  [c.306]

Вырезка образцов. Место вырезки образца и плоскость щлифа определяются задачами исследования и технологией обработки изделия. При макроанализе литья и сварных швов темплет обычно вырезается перпендикулярно к поверхности изделия при макроанализе кованых, штампованных, катаных и термически обработанных изделий темплет вырезается как в продольном, так и поперечном направлениях и снабжается соответствующей маркировкой. При определении места вырезки образца для микроисследования учитывают результаты макроиспытаний, просвечивания рентгеновыми лучами, магнитной дефектоскопии и других физических методов испытаний. Для вырезки образцов применяют при низкой и средней твёрдости металла металлорежущие станки и механическую или ручную ножовку, при более высокой твёрдости—быстроходные алундовые диски толщиной 1—2 мм. Образцы хрупкого материала отбиваются приводным молотом или ручным молотком. При невозможности осуществить взятие  [c.136]

При приемке HiOiBbix котлов следует производить тщ-ательную проверку состояния паверхности барабанов путем визуального осмотра и применения современ- ных средств дефектоскопии. Для обнаружения дефектов в сварных швах и расслоения основного металла целесообразно применять ультразвуковой метод, а для обнаружения трещин — магнитно-суспензионный метод или метод пенетрантов (красящих жидкостей и порошков). Результаты осмотров и проверок оформляются актами и заносятся в котельную книгу с последующим принятием мер по их устранению и в случае необходимости — предъявлением рекламаций заводу-изготовителю.  [c.205]

Ультразвуковая дефектоскопия (УЗД) - один из наиболее эффективных методов неразрушающего контроля. Дефектоскопия основана на принципе передачи и приема ультразвуковых импульсов, отражаемых от дефекта, расположенного в металле. Высокочастотные звуковые воЛны распространяются по сечению контролируемой детали или узла направлешо и без заметного затухания, а от противоположной поверхности, контактирующей с воздухом, полностью отражаются. Для возбуждения и приема колебаний используются прямой и обратный пьезоэлектрический эффекты титаната бария (кварца). Генератор электрических ультразвуковых колебаний возбуждает пьезоэлектрический излучатель (передающий щуп), который через слой жидкости связан с поверхностью детали. Механические колебания, полученные от действия переменного магнитного поля на пьезоэлектрическую пластинку излучателя, распространяются по толще металла и достигают противоположной стороны сечения. Отражаясь, возвращаются и через жидкую среду возбуждают в пьезоэлектрическом приемнике (приемном щупе) электрические колебания, которые после усиления высвечивают на индикаторе характер прохождения колебаний. Если препятствий, мешающих прохождению колебаний, не оказалось, амплитуды прямого и отраженного импульсов одинаковы. При наличии дефекта импульсных пиков будет три, причем отраженный от дефекта - меньший (рис. 4.4). Во время работы дефектоскопа колебания возбуждаются не непрерывно, а короткими импульсами. Существует несколько тапов дефектоскопов и наборов щупов.  [c.157]

Усталостные повреждения корпусных деталей, будучи незначительными, могут развиваться до сквозных трещин, создавая опасность разрушения. В связи с этим неразрушающие методы контроля металлов на тепловых электростанциях приобрели весьма важное значение. Существующие методы неразрушающего контроля можно классифицировать следующим образом тепловые методы с помощью инфракрасной аппаратуры, магнитные и электромагнитные методы, акустические методы (ультразвуковая дефектоскопия и метод акустической эмиссии), радиационные методы (радиография, ксерорадиография), метод проникающих жидкостей, метод травления химическими реактивами, гидравлические испытания и испытания сжатым газом.  [c.54]

При наличии подтеков котловой воды, солевых отложений и других признаков течи заклепочных швов и вальцовочных соединений проверяют магнитным или ультразвуковым методами дефектоскопии отсутствие трещин в металле около опасных в этом отношении мест — в заклепочных швах, у штуцеров ввода питательной воды и фосфатов, водосоединительных труб водоуказательных приборов, линий рециркуляции, ввода пара для прогрева барабанов, в перемычках между трубными отверстиями и т. п.  [c.252]

Повреждения трубок пароперегревателей могут иметь место из-за дефектов их изготовления и из-за несоответствия качества металла трубок условиям работы. Под дефектами изготовления трубок подразумеваются трещины, плены, закаты и разностенность, превышающая установленные нормы. Как уже указывалось, отдельные части пароперегревателя выполняются из легированной стали различных марок. При монтаже или замене трубок во время ремонта иногда вместо легированных устанавливают углеродистые или легированные, но другой марки. Ошибочно установленные трубки, попадая в температурные условия, не соответствующие материалу, выходят из строя. Для предотвращения таких ошибок необходимо перед установкой новых трубок при монтаже или при ремонте обязательно проверять леги-рованность металла и наличие в нем нужных легирующих элементов стилоскопированием, а после монтажа или ремонта все сварные стыки проверяются методом магнитной дефектоскопии.  [c.255]



Смотреть страницы где упоминается термин Металлы Дефектоскопия магнитная : [c.110]    [c.11]    [c.196]    [c.474]    [c.57]    [c.360]    [c.386]    [c.155]    [c.245]    [c.66]    [c.118]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.171 ]



ПОИСК



Дефектоскопия

Дефектоскопия магнитная

Дефектоскопы



© 2025 Mash-xxl.info Реклама на сайте