Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сооружения разделяющие

По этой классификации все здания и сооружения разделены на 4 группы по степени возрастания агрессивности атмосфер (табл. 69).  [c.428]

Крытые и открытые спортивные сооружения разделяются на отдельные сооружения, предназначенные как для одного, так и для нескольких видов спорта (т.е. универсальные) при условии трансформации их оборудования и комплексные, состоящие из нескольких отдельных сооружений для разных видов спорта, объединенных общностью территории или размещенных в одном здании.  [c.296]


Противопожарные требования. Наименьшие допустимые расстояния между зданиями и сооружениями зависят от их огнестойкости. По пределу огнестойкости отдельных частей здания и сооружения разделяются на пять степеней (табл. 53).  [c.542]

Подьемно-транспортные сооружения разделены на группы В1-В6, а сварные соединения на виды КО, К1, К2, КЗ, К4. В табл. 9.5.2  [c.340]

Конструкции оболочкового типа собирают из листовых яа отовок и сваривают герметичными швами. В зависимости от габаритных размеров, конструктивного оформления и характерных особенностей изготовления и эксплуатации оболочковые конструкции можно разделить на негабаритные емкости и сооружения, сосуды, работающие под давлением, трубы н трубопровод . .  [c.240]

Основной задачей науки о сопротивлении материалов является разработка методов расчета надежных и наиболее экономичных в отношении веса и размеров различных элементов сооружений и машин. Прежде чем перейти к конкретному рассмотрению этих методов расчета, познакомимся с основными понятиями и определениями, с которыми придется встречаться при изучении материала данного раздела,  [c.122]

Изучение колебательных процессов имеет важное значение для различных разделов механики, физики и техники. Вибрация сооружений и машин, электромагнитные колебания в радиотехнике и оптике, звуковые и ультразвуковые колебания — все эти не похожие друг на друга процессы объединяются методами математической физики в одно общее учение о колебаниях. 1  [c.526]

Наука о механическом движении и взаимодействии материальных тел и называется механикой. Круг проблем, рассматриваемых в механике, очень велик и с развитием этой науки в ней появился целый ряд самостоятельных областей, связанных с изучением механики твердых деформируемых тел, жидкостей и газов. К этим областям относятся теория упругости, теория пластичности, гидромеханика, аэромеханика, газовая динамика и ряд разделов так называемой прикладной механики, в частности сопротивление материалов, статика сооружений, теория механизмов и машин, гидравлика, а также многие специальные инженерные дисциплины. Однако во всех этих областях наряду со специфическими для каждой из них закономерностями и методами исследования опираются на ряд основных законов или принципов и используют многие понятия и методы, общие для всех областей механики. Рассмотрение этих общих, понятий, законов и методов и составляет предмет так называемой теоретической (или общей) механики.  [c.5]


Теория колебаний представляет собой обширный раздел современной физики, охватывающий весьма широкий диапазон вопросов механики, электротехники, радиотехники, оптики и пр. Особое значение имеет теория колебаний для прикладных задач, встречающихся в инженерной практике, в частности в вопросах прочности машин и сооружений. Известны случаи, когда строительное сооружение, рассчитанное с большим запасом прочности на статическую нагрузку, разрушалось под действием сравнительно небольших периодически действующих сил. Во многих случаях жесткая и весьма прочная конструкция оказывается непригодной при наличии переменных сил, в то время как такая же более легкая, и на первый взгляд менее прочная, конструкция воспринимает эти усилия совершенно безболезненно. Поэтому вопросы колебаний и вообще поведения упругих систем под действием переменных нагрузок требуют от конструктора особого внимания.  [c.459]

Восстанавливающая сила. Теория колебаний является одним из важнейших разделов теоретической механики. Ее роль в современной технике все время возрастает. При проектировании двигателей, машин и механизмов, мостов и других сооружений всегда  [c.74]

В доступной популярной форме изложены современные представления о механике разрушения - новом разделе механики твердого деформируемого тела, возникшем совсем недавно. Содержанием книги охвачен широкий круг вопросов, включающих в себя выяснение причин некоторых серьезных катастроф ответственных конструкций и сооружений, необходимость и своевременность построения теории распространения магистральных трещин, внедрение механики разрушения в практику расчетов сосудов давления, ядерных реакторов, роторов турбин и т.п.  [c.243]

На протяжении почти всей истории развития механики можно проследить взаимную связь между проблемами теоретической механики и проблемами техники и физики. Теоретическая механика в наши дни черпает проблемы, нуждающиеся в разработке, из конкретных вопросов космонавтики, вопросов автоматического регулирования движения машин, их расчета и конструирования, из вопросов строительной механики и т. д. Так возникли новые разделы теоретической механики. Например, современная теория колебаний систем материальных точек и теория устойчивости движения в значительной степени обязаны своим развитием необходимости изучения вибраций летательных аппаратов и различных деталей инженерных сооружений, машин и механизмов, необходимости создания надежной теории регулирования движения машин. Конечно, и теоретическая механика влияет на развитие отраслей техники, связанных с расчетами и конструированием деталей машин и инженерных сооружений. Этим объясняется значимость теоретической механики как науки.  [c.19]

На основе теорем и принципов теоретической механики решаются многие инженерные задачи и осуществляется проектирование новых машин, конструкций и сооружений. Хорошее усвоение курса теоретической механики требует не только глубокого изучения теории, но и приобретения твердых навыков в решении задач. Для этого необходимо самостоятельно решить большое количество задач по всем разделам курса из соответствующих сборников и выполнить ряд специальных заданий.  [c.3]

Несмотря на высокий уровень развития современной гидродинамической теории, далеко не все задачи могут быть решены теоретически с достаточной для практики точностью и надежностью. Многие задачи приходится решать экспериментально. При создании современных гидравлических и газодинамических машин, приборов, летательных аппаратов, сооружений и т. п. гидродинамический расчет является важнейшим и обязательным этапом проектирования, но все же результирующая оценка качеств и характеристик создаваемой мащины или сооружения производится на основе экспериментальных испытаний модели или натурного объекта. Роль гидродинамического эксперимента велика, и существует обширный раздел гидромеханики, составляющий в значительной степени самостоятельную дисциплину — экспериментальную гидродинамику (или экспериментальную аэродинамику, если речь идет об опытах с воздушной средой).  [c.126]


В зависимости от пропускной способности очистные станции разделяют на местные, малые, поселковые и городские. В условиях сельских населенных мест применяются местные, малые и поселковые очистные станции (сооружения).  [c.233]

Существующие в настоящее время сооружения для биохимической очистки сточных вод могут быть разделены на два основных типа 1) сооружения, в которых очистка происходит в условиях, близких к естественным 2) сооружения, в которых очистка происходит в искусственно созданных условиях.  [c.342]

За последние десятилетия возникли и развились новые разделы механики, занимающие промежуточное положение между сопротивлением материалов и теорией упругости, например прикладная теория упругости возникли родственные им дисциплины, такие как теория пластичности, теория ползучести-, созданы новые разделы науки о прочности, имеющие конкретную практическую направленность, например строительная механика сооружений, строительная механика самолета, теория прочности сварных конструкций и т.д.  [c.10]

Третья предельная глубина Лб. прз разделяет поверхностный режим с затопленной струей и незатопленный поверхностно-донный режим (рис. 24.5), при котором вблизи сооружения — поверхностный режим сопряжения, а далее транзитная струя проходит вблизи дна, т. е. наблюдается донный режим сопряжения.  [c.202]

Совокупность наук о прочности, жесткости и устойчивости сооружений называется строительной механикой . Одним из разделов строительной механики является сопротивление материалов. Другими ее разделами являются теория упругости (математическая и прикладная), теория пластичности и теория сооружений (включая статику, динамику и устойчивость сооружений ).  [c.5]

Сопротивление материалов представляет собой одни из разделов механики твердого деформируемого тела. Изучая процессы деформирования и разрушения тел, сопротивление материалов стремится установить основные принципы и методы расчета частей сооружений и машин на прочность, жесткость и устойчивость.  [c.11]

В книге особое внимание уделяется новым вопросам и разделам строительной механики, получившим развитие в последнее время. Учтены также возросшие требования к подготовке инженеров для работы в проектно-конструкторских организациях и необходимость знания современных проблем и методов теории расчета сооружений.  [c.151]

Внешние силы (нагрузки) могут действовать на части машин и сооружений различно. В зависимости от способа приложения силы МОЖНО разделить на объемные и  [c.13]

В данном учебном пособии рассмотрены задачи, посвященные определенным разделам гидравлики давлению жидкости на поверхности различного рода истечению жидкости из малых и больших отверстий сосудов разной формы при постоянном и переменном напорах определению работы, затрачиваемой при выкачивании жидкости, расширении и сжатии газа в цилиндре некоторые специальные вопросы гидравлики открытых русел и сооружений.  [c.3]

Несмотря на указанные недостатки усиленный дренаж получил достаточно широкое применение. Во-первых, организации, эксплуатирующие подземные сети, прежде всего заинтересованы в заш,ите своих коммуникаций, а предприятия, эксплуатирующие рельсовый транспорт, как правило, не имеют своих служб по борьбе с коррозией, а потому у них нет данных о скорости коррозионных повреждений рельсовой сети. Во-вторых, в проектах на строительство новой рельсовой сети часто отсутствует раздел Электрохимическая защита подземных сооружений . Поэтому, например, после пуска городского трамвая часто возникают коррозионные повреждения внутриквартальных трубопроводов, кабелей, опор и кроме того приходится завышать мощности внутриквартальных СКЗ для погашения наведенных на сооружениях блуждающих токов.  [c.51]

Однако для технических объектов и в особенности для подземных сооружений это часто не удается. Возможности элиминирования составляющей Т1д, т. е. измерения потенциала без омической составляющей потери напряжения IR описаны в разделе 3.3.1.  [c.53]

При наличии блуждающих токов методы испытаний с переключением, описанные в разделе 3.3.1, не могут быть применены. Станции для защиты от блуждающих токов сооружают обычно там, где трубопровод имеет самый положительный потенциал по отношению к грунту. При отключении защитного тока здесь сравнительно быстро устанавливается слишком положительный потенциал стекания блуждающего тока, содержащий также и составляющую омического падения напряжения. Определить потенциал труба — грунт без составляющей омического падения напряжения в районах с наличием блуждающих токов можно только в периоды прекращения работы источников блуждающего тока. Чтобы избежать получения более положительного потенциала, чем требуемый защитный, потенциал трубы по отношению к грунту в районах воздействия блуждающего тока по соображениям безопасности обычно принимают значительно более отрицательным, чем на сооружениях, не подвергающихся воздействию блуждающего тока. На основе записей можно установить, в каких местах в нерабочее время следует измерять потенциал труба — грунт, не содержащий омического падения напряжения. Если в таких местах будут установлены потенциалы, более отрицательные, чем защитный, то необходимо применить полную катодную защиту.,  [c.99]

Согласно рассуждениям в разделе 2.4, электрохимическая защита обеспечивается в том случае, если потенциал (с элиминированием омического падения напряжения) удовлетворяет критериям согласно неравенствам (2.45) —(2.48). Для подземных сооружений из черных металлов потенциал (по медносульфатному электроду сравнения) должен быть более отрицательным, чем — 0,85 В. Этот критерий известен дав-  [c.100]

Наиболее доступными способами борьбы с атмосферной коррозией углеродистых сталей являются различные металлические покрытия лакокрасочные покрытия, содержащие пассивирующие пигменты применение замедлителей коррозии, смазок и др. В зависимости от конструкционных особенностей сооружений, деталей и изделий, эксплуатационных условий, характера агрес-сишпн атмосферы и т. д. в каждом отдельном случае выбирается тот 1ЛИ иной метод защиты. Эти методы защиты рассматри-ваю- ся в соответствующих разделах.  [c.183]


Среди наук, изучаювщх вопросы деформируемых тел, за последние десятилетия возникли и развились новые разделы механики, занимающие промежуточное положение между сопротивлением материалов и теорией упругости, как, например, прикладная теория упругости возникли родственные им дисциплины, такие, как теория пластичности, теория ползучести и др. На основе общих положений сопротивления материалов созданы новые разделы науки о прочности, имеющие конкретную практическую наиравленность. Сюда относятся строительная механика сооружений, строительная механика самолета, теория прочности сварных конструкций и многие другие. Методы сопротивления материалов не остаются постоянными. Они изменяются вместе с возникновением новых задач и новых требований практики. При ведении инженерных расчетов методы сопротивления материалов следует применять творчески и помнить, что успех практического расчета лежит не столько в применении сложного математического аппарата, сколько в умении вникать в существо исследуемого объекта, найти наиболее удачные упрощающие предположения и довести расчет до окончательного числового результата.  [c.10]

Родниковые воды представляют собой выход подземных вод на поверхность. По виду родникового потока родники можно разделить на восходящие и нисходящие. Восходящие потоки образуются в результате нарушения слоя, перекрывающего напорные водоносные пласты. Нисходящие родниковые воды образуются в результате выклинивания водоносных горизонтов (например, на склонах берегов, оврагов, балок, холмов). Каптаж заключается во вскрытии и устройстве сооружений, обеспечивающих наиболее полное использование источника и предохранение его от загрязнения поверхностными водами. Конструкция каптажного сооружения зависит от вида потока.  [c.189]

Сооружения для биохимической очистки в естественных условиях, в свою очередь, могут быть разделены на сооружения, в которых происходит фильтрование очищаемых сточных вод (поля орошения и поля фильтрации), и на сооружения, представляющие собой естественные бассейны (пруды). В сооружениях первого типа питание кислородом идет главным образом за счет непосредственного поглощения его микроорганизмами из воздуха. В сооружениях второго типа питание кислородом идет, главным образом, за счет диффундирования его через поверхность воды (реаэрация).  [c.342]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Превосходные руководства, написанные недавно скончавшимся выдающимся ученым, педагогом и инженером С. П. Тимошенко (1878—1972), охватывают почти все разделы механики твердого тела техническуьэ механику i), сопротивление материалов ), статику сооружений ), теорию колебаний ), теорию упругости ), теорию пластинок и оболочек ), теорию упругой устойчивости ) и историю развития механики деформируемых тел ). Большинство этих книг на протяжении более полувека служат во всем мире основными пособиями по механике в высших технических учебных заведениях и настольными руководствами для инженеров и исследователей. Как правило, они многократно переиздавались и (в некоторых случаях при участии учеников С. П. Тимошенко) подвергались модернизации.  [c.9]

Характерной особенностью схем энергоблоков мощностью 300 МВт и более является разделение питательных насосов на основные и бустерные. Установка бустерного насоса диктуется следующими причинами. При увеличении мощности турбин увеличивается и подача применяемых насосов. Но с увеличением частоты в ращения насоса и его подачи повышается требуемый подпор на всасывающей стороне, если одновременно не снижать частоту в ращения ротора. Снижение же частоты вращения уменьшает напор, развиваемый ступенью насоса по квадратичной зависимости, и увеличивает количество ступеней. Это делает насос более тяжелым, дорогим и крупногабаритным (особенно для высоконапорных насосов). Для того чтобы избежать утяжеления насоса, его как бы разделяют на два первый, буст рный — имеет малую частоту в ращения и не требует большого подлора, а второй, основной — имеет большую частоту в ращения, а следовательно, более компактен, что возможно благодаря подпору, создаваемому бустерным насосом. Таким образом, конструктивные соображения вынудили ограничить число ступеней насоса и увеличить частоту его вращения. Последнее в свою очередь пршвело к сооружению бустерного насоса.  [c.239]

Среди наук, изучающих вопросы деформируемых тел, за последние десятилетия возникли и развились новые разделы механики, занимающие промежуточное положение между сопротивлением материалов и теорией упругости, такие, например, как прикладная теория упругости возникли родственные им дисциплины, такие, как теория пластичности, теория ползучести и др. На основе общих положений сопротивления матсфиалов созданы новые разделы науки о прочности, имеющие конкретную практическую направленность. Сюда относятся строительная механика сооружений, строительная механика самолета, теория прочности сварных конструкций и многие другие.  [c.10]

В пособие включены задания к одиннадцати расчетно-графическим и одиннадцати самостоятельным работам по разделам Теоретическая механика , Сопротивление материалов и Статика сооружении . По большинству тем курса составлены задания и для рао-четно-графнческих, и для самостоятельных работ, которые различаются сложностью задач.  [c.3]


Характерные формы, способы закрепления и нагружения элементов конструкций. Твердое тело используется не только в качестве звена при создании механических машин. Много раньше оно стало служить для возведения построек. В наше время число различных стационарных инженерных сооружений очень велико. Кроме жилых, общественных и промышленных зданий сооружаются мосты, резервуары, трубопроводы, плотины и многое другое. Поэтому естественно, что механика упругого твердого тела первоначально получила развитие именно применительно к расчету различных инженерных форужений и лишь позднее была распространена на машиностроительные конструкции. Поэтому-то раздел механики упругого твердого тела, посвященный расчету строительных конструкций, иногда называют строительной механикой. Отсюда же возникли и те характерные конструктивные формы и типовые способы закрепления и нагружения, о которых будет сказано ниже.  [c.94]

Теория ползучести — одно из направлений механийй дефор- мируемого твердого тела, которое сложилось за последнее время. Она занимает свое место рядом с такими разделами механики, как теория упругости и теория пластичности. Ползучесть влияет на прочность и устойчивость конструкций и деталей машин. Поэтому расчет соору кений на прочность с учетом свойств ползучести материала приобретает первостепенное значение для современной техники. Однако теория ползучести является не только основой для создания методов расчета элементов конструкций и деталей машин, работающих в сложных эксплуатационных уело- -ВИЯХ. Теория ползучести, обладая своеобразным полем зрения , служит для понимания того, как выбрать тот или Иной материал для данной конструкции, в каких условиях его нужно испытывать, какие требования необходимо предъявлять к технологии возве- дения сооружений или изготовления различных элементов конструкций и деталей машин. Бот почему за последнее время вышел в свет целый ряд фундаментальных исследований и монографий, посвященных теории ползучести и теории вязкоупругости как у нас в стране [216, 302, 307, 336, 399, 415], так и За рубежом [63,261,479,556,594,611,632].  [c.7]

Н. Н. Павловского. В процессе возведения сооружений Свирьстроя были проведены модельные испытания, что явилось основой нового раздела знаний — гидравлики производства работ.  [c.64]

В учебном пособии рассмотрены математические приеш решения задач некоторых разделов гидравлики /технической гидромеханики/ давление жидкости на поверхности истечение жидкости из малых и больших отверстий сосудов различной ( ормы при постоянном и переменном напорах определение работы, эапрачиваемой при выкачивании жидкости, расширении и сжатии газа в цилиндре специальные вопросы гидравлики открытых русел и сооружений.  [c.2]


Смотреть страницы где упоминается термин Сооружения разделяющие : [c.192]    [c.31]    [c.273]    [c.195]    [c.286]    [c.318]    [c.106]    [c.16]    [c.102]   
Техническая энциклопедия Том19 (1934) -- [ c.266 ]



ПОИСК



РАЗДЕЛ и СООРУЖЕНИЯ И УСТРОЙСТВА. ГАБАРИТЫ Общие сведения о сооружениях и устройствах

Раздел двенадцатый. Примеры гидравлического расчета узла гидротехнических сооружений

Раздел семнадцатый Подсобные предприятия и временные сооружения 17-1. Трубозаготовительные мастерские

Сооружения



© 2025 Mash-xxl.info Реклама на сайте