Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение температуры акустическое

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]


В этой главе, посвященной практическим вопросам измерения температуры, прежде всего рассматриваются три основных метода первичной термометрии. Это — классическая газовая термометрия, акустическая газовая термометрия и шумовая термометрия. Затем выясняется роль магнитной термометрии. Магнитная термометрия в обсуждаемом случае не применяется в качестве первичного метода, однако она тесно связана с первичной термометрией и поэтому ее роль выясняется ниже. То же самое можно сказать о газовых термометрах, основанных на коэффициенте преломления и диэлектрической проницаемости как тот, так и другой могут быть использованы в качестве интерполяционного прибора. Термометрия, основанная на определении характеристик теплового излучения, рассматривается отдельно в гл. 7. В данной главе в основном обсуждаются принципиальные основы каждого из методов, а не результаты измерений, поскольку последние были представлены в гл. 2, где говорилось о температурных шкалах.  [c.76]

На рис. 3.12 приведена схема низкочастотного акустического интерферометра, созданного для измерения температуры. Этот прибор [16] применялся в области от 4,2 до 20 К почти одновременно с газовым термометром, показанным на рис. 3.5. Не вдаваясь в подробности конструкции и принципы действия отдельных узлов, рассмотрим кратко основные элементы при-  [c.110]

Формулировка проблемы. Первым шагом при решении задачи уменьшения шумов, порождаемых какой-либо отдельной деталью двигателя, является классификация этого шума и определение его доли в общем шуме двигателя. Обычно измерение уровня шумов проводится с полностью покрытым звукоизоляцией двигателем, и далее исследуются независимо друг от друга основные источники шума. Однако разработанные в последнее время приборы позволяют определять вклад различных источников шума с помощью измерения различных параметров на поверхности двигателя без покрытия его звукоизоляцией. Именно такие приборы для измерений интенсивности акустических колебаний здесь широко применялись. Их работа основана на измерении уровней звукового давления с помощью двух микрофонов, установленных около поверхности исследуемого узла. По результатам измерений, получаемых при помощи микрофонов, можно определить интенсивность излучения акустических волн в заданном направлении. Обследовав таким образом всю поверхность узла и просуммировав полученные результаты, можно определить мощность акустического излучения этого узла. Подобные приборы можно использовать как на работающем двигателе, так и на неработающем. В последнем случае к двигателю прикладывается сила, возбуждающая колебания, по возможности близкие тем, что возникают в работающем двигателе. Данный подход удобен для исследования влияния тех или иных внешних условий, например температуры окружающей среды, на работу демпфирующего покрытия, что будет проиллюстрировано на примере крышки клапанов.  [c.374]


В настоящее время в СССР и за рубежом ведутся работы по изучению термодинамических методов измерения температуры в области ниже 0°С с помощью акустического, термошумового термометра и термометра, основанного на зависимости квадрупольного ядерного резонанса от температуры [4, 5]. Возможно, что в недалеком будущем один из этих термодинамических методов определения температуры ниже 0°С станет исходным.  [c.71]

Наиболее широко для мониторинга используются измерения вибраций, акустической эмиссии, температуры.  [c.289]

На погрешность средств измерений большое влияние оказывают условия его применения. Величина, которую не измеряют данным средством измерения, но которая оказывает влияние на результаты измерений этим средством, называется влияющей физической величиной, например, температура, давление, влажность, запыленность окружающей среды, механические и акустические вибрации и т. п. Условия применения средств измерения, при которых влияющие величины имеют нормальное значение или находятся в пределах нормальной области значений, называют нормальными условиями. Нормальные условия для линейных и угловых измерений — температура 20 °С, атмосферное давление 101,32472 кПа (760 мм рт. ст.), относительная влажность 58 % и др.  [c.14]

Шумомер ШЗ-М предназначен для измерения уровня акустических шумов в воздушной среде. В комплекте с анализатором спектра шума АШ-ЙМ шумомер применяют для определения спектрального состава шума. Шумомер рассчитан на работу при температуре окружающего. воздуха от +10° до +36°С, относительной влажности воздуха до 80%. Кроме того, должны отсутствовать ме-  [c.139]

В СИ установлены семь основных единиц, используя которые, можно измерять все механические, электрические, магнитные, акустические и световые параметры, а также характеристики ионизирующих излучений и параметры в области химии. Основными единицами СИ являются метр (м) — для измерения длины килограмм (кг) — для измерения массы секунда (с) — для измерения времени ампер (А) — для измерения силы электрического тока кельвин (К) — для измерения температуры моль (моль) — для измерения количества вещества и кандела (кд) — для измерения силы света.  [c.116]

Международная система единиц содержит шесть основных, единиц и две дополнительные такое количество основных и дополнительных единиц делает систему универсальной, так как. она затрагивает измерения всевозможных величин механических, тепловых, электрических, магнитных, световых, акустических. Основными единицами установлены метр (м)—для измерения длины килограмм (кг) —для измерения массы секунда (сек.)—для измерения времени градус Кельвина (°К)—для-измерения температуры ампер (а) —для измерения силы электрического тока свеча (се)—для измерения силы света.  [c.57]

СИ содержит семь основных единиц, которые затрагивают измерения всевозможных параметров механических, тепловых, электрических, магнитных, световых, акустических и ионизирующих излучений и в области химии. Основными единицами установлены метр (м) — для измерения длины килограмм (кг) — для измерения массы секунда (с)—для измерения времени градус Кельвина (° К) — для измерения температуры ампер (А) —для измерения силы электрического тока канде-ла (свеча) кд — для измерения силы света и моль — для измерения количества вещества.  [c.73]

Активация дислокаций происходит в основном в результате поглощения акустической энергии в местах дефектов кристаллической решетки и других структурных несовершенств. Благодаря этому за малое время происходит локальный нагрев вокруг этих источников поглощения, снятие напряжений, разблокировка дислокаций, увеличение их подвижности, что обеспечивает более интенсивный ход пластической деформации Поэтому дислокации в местах поглощения могут двигаться при более низких напряжениях, чем те, которые требуются исходя из измеренной температуры в объеме образца.  [c.109]


В акустическом методе определения теплофизических свойств по сути используются те же принципы, что и в известных методах измерения тепло-физических характеристик, но вместо температуры и ее изменений измеряют параметры резонансных колебаний, что позволяет избежать трудностей, свя -занных с динамическими измерениями температуры.  [c.158]

Чтобы объяснить различие между первичной и вторичной термометрией, прежде всего укажем, в чем смысл первичной термометрии. Под первичной термометрией принято понимать термометрию, осуществляемую с помощью термометра, уравнение состояния для которого можно выписать в явном виде без привлечения неизвестных постоянных, зависящих от температуры. Выше было показано, каким образом постоянная Больцмана обеспечивает необходимое соответствие между численными значениями механических и тепловых величин и каким образом ее численное значение определяется фиксированием температуры 273,16 К для тройной точки воды. Таким же способом было найдено численное значение газовой постоянной. Таким образом, имеются три взаимосвязанные постоянные Т (тройная точка воды) или То (температура таяния льда), к и R. В принципе теперь можно записать уравнение состояния для любой системы и использовать ее в качестве термометра, смело полагая, что полученная таким способом температура окажется в термодинамическом и численном согласии с температурой, полученной при использовании любой другой системы и другого уравнения состояния. Примерами таких систем, пригодных для термометрии, могут служить упомянутые выше при обсуждении определения к н Я газовые, акустические, шумовые термометры и термометры полного излучения. Наличие не зависящих от температуры постоянных, таких, как геометрический фактор в термометре полного излучения, можно учесть, выполнив одно измерение при То Последующее измерение Е(Т)  [c.33]

До сих пор не говорилось о том, каким образом может быть измерена скорость звука. Выше мы обращали внимание на отклонение свойств газа от идеального состояния и отмечали, что скорость Со относится к безграничному пространству. На практике, особенно в области низких температур, скорость звука измеряется в относительно небольшой колбе, которая должна иметь постоянную температуру. В настоящее время наиболее точные измерения скорости звука осуществляются при помощи акустического интерферометра с цилиндрическим резонатором. Акустические волны возбуждаются в трубе излучателем, расположенным на ее конце длина волны находится измерением перемещения отражателя между соседними резонансными максимумами. Положение стоячих волн определяется по импедансу излучателя. В этом состоит одна из трудностей акустической термометрии по сравнению с газовой. В газовой термометрии измеряемые величины, объем и давление, являются величинами статическими, хотя и существуют проблемы, связанные с сорбцией, о которой говорилось выше. В акустической термометрии измеряемые величины носят динамический характер — это акустический импеданс излучателя, например, при 5 кГц, вязкость и теплообмен со стенками трубы. Все это оказывается источником специфических трудностей при измерении, и для правильной интерпретации результатов измерения необходимо полное понимание физической сущности процессов распространения акустических волн.  [c.101]

Значения электрооптических коэффициентов для различных типов кристаллов приведены в табл. 33.1— 33.4. Если частота электрического поля, при которой произведены измерения, намного выше или ниже частоты собственного акустического резонанса, то использованы соответственно обозначения (S) иг. ИЛИ (Г) и Погрешность измеренных значений г, , около 15%. В сегнетоэлектриках и других материалах, имеющих фазовый переход, наблюдается сильная зависимость электрооптического коэффициента от температуры. если последняя близка к критической температуре Тка- Зависимость г /1, от длины волны света в области прозрачности веществ, как правило, слабая.  [c.861]

К другим причинам, вызывающим погрешности измерения, можно отнести изменение температуры. Оно влияет на скорость звука в изделии, что компенсируют соответствующей подстройкой. Изменяется также скорость звука в материале преобразователя, например в акустических задержках (призмах) РС-пре-образователя. Для исключения этой погрешности прибор должен обеспечивать измерение времени пробега импульса между поверхностями изделия и не включать в измеренный интервал время пробега в призмах.  [c.404]

Требования к нормальным условиям измерений, установленные в государственных стандартах и другой нормативной документации, отличаются большой пестротой. Результаты анализа стандартизованных нормальных значений и областей влияющих величин по средствам и методам измерений пространства, времени, механических величин, температур и тепловых величин, расходов, электрических и магнитных величин, физико-химических, оптических, светотехнических, акустических параметров и ионизирующих излучений показывают, что даже для температуры, влажности, давления в разных документах установлены различные номиналы. В ряде стандартов нормальные области значений влияющих величин дифференцированы по точности средств и методов измерений. В этом отношении наиболее подробными и полными документами являются ГОСТ 8.050—73, геи Нормальные условия линейных и угловых измерений , ГОСТ 12997—76, ГСП Общие технические требования , ГОСТ 22261—76, Средства измерений электрических величин .  [c.18]


Одной из наиболее серьезных проблем экспериментального исследования двухфазных жидкостей, все еще не решенной, является создание необходимых измерительных приборов и соответствующей методики измерения. Комплекс необходимых измерительных приборов для двухфазной области должен включать прежде всего измерители термодинамических и теплофизических параметров (давлений, температур, мгновенных весовых или объемных концентраций и других параметров отдельно паровой и жидкой фаз), приборы для измерения скоростей движения частиц пара и жидкости, геометрической структуры влажного пара (формы и размера частиц разрывной фазы, расстояния между частицами), траекторий движения частиц пара и жидкости, толщины пленки жидкости, акустических свойств влажного пара, плотности потока и т. д.  [c.388]

Скорость звука в насыщенных парах фреона-10 определяли экспериментально только в одной работе [1.31], проделанной в Институте теплофизики СО АН СССР. Измерения охватывают интервал температур T = S4S—535 К, выполнены по методу низкочастотного акустического резонатора и их погрешность, по оценке авторов, не превышает 1 %. Заметим, что на этой же установке измерена скорость звука в насыщенных парах фре-  [c.35]

Для суждения о нарушении осевой симметрии в круглой турбулентной струе (о модовом составе крупномасштабных когерентных структур) используются измерения пространственной азимутальной корреляции продольных пульсаций скорости, пульсаций температуры [1.48] в слое смешения, а также пульсаций давления вне струи в ее ближнем акустическом поле. Так, по данным измерений азимутальной корреляции пульсаций скорости Ruu ) ортогонального Фурье-разложения  [c.25]

В неизотермических струях повышение температуры приводит к возрастанию градиента скорости звука в слое смешения струи и усилению отклонения направления излучения от оси струи. Пространственное распределение шума струи при увеличении температуры потока становится неравномерным, а максимум интенсивности акустического излучения смещается в сторону больших углов (р например, при начальной температуре струи То = 800 К он наблюдается при ip = 40° (рис. 1.15). Здесь характеристики направленности шума струи даны в виде зависимостей 10 Ig Ф от угла (р между осью струи и направлением на точку измерения шума, причем 10 Ig Ф - фактор направленности, который представляет собой разность между измеренным уровнем шума и уровнем шума в той же точке от фиктивного источника такой же мощности, как и исследуемый источник, но излучающего звук равномерно во всех направлениях.  [c.29]

Опыты показали также, что профили относительной скорости и/пт и относительной избыточной температуры представленные в виде зависимостей от г/го.5, не изменяются и хорошо описываются профилем Шлихтинга [5] (г — расстояние от оси струи, го.5 — значение г, при котором и/пт ИЛИ 1/1т равно 0.5). При вдуве происходит лишь изменение осевых значений параметров Пт и а также характерной толщины струи Го.5- Эти данные показывают, что формальная интерпретация воздействия струйного шумоглушителя как средства, сокращающего акустическую мощность струи вследствие уменьшения длины начального участка имеет определенное физическое основание. В связи с этим были проведены оценки уменьшения уровня шума, излучаемого струей по результатам измерения длины начального участка, представленным на рис. 9. Для итого использовалась методика расчета работы [6]. Проведенные вычисления показали, что в опытах на модели сопла диаметром 20 мм снижение уровня шума должно составлять около 2 дБ.  [c.479]

Вычислить величину у, соответствующую акустическим фононам, еще более сложно. Для кристаллов, имеющих структуру алмаза, но отличных от алмаза, было взято значение = 0,58, соответствующее среднему из значений, вычисленных для германия и теллурида цинка, в то время как для алмаза было взято значение у ,, равное 0,77 от значения у. полученного из измерений теплового расширения при высоких температурах. Для всех других рассмотренных кристаллов использовалось значение у, найденное по высокотемпературному тепловому расширению, хотя известно, что оно заметно отличается от необходимого значения у ,.  [c.79]

Поскольку исследование акустических течений связано с измерением малых скоростей, иногда возникает необходимость поддерживать постоянной температуру во всем исследуемом объеме, ибо температурные неоднородности, особенно сильные в том случае, когда исследуемый объем подсвечивается мощным источником света, могут привести к конвективным потокам, вносящим погрешность в результаты измерений. Это особенно важно при наблюдении потоков в газах [16].  [c.236]

Необходимость в новой шкале ниже 30 К стала очевидной после измерений с акустическим и магнитными термометрами, которые показали, чтб МПТШ-68 и шкала по давлению паров гелия заметно отклоняются от термодинамической шкалы и притом в разные стороны, что означает их взаимное несоответствие. Отклонение шкал по давлению паров гелия зНе-1962 и Це-1958 от термодинамической температуры впервые было  [c.65]

Блок измерения температуры состоит из модулятора 1, системы фокусировки и наводки 2, оптико-акустического приемника 3, усилителя 5 и регистрирующего устройства 4. В состав системы фокусировки и наводхн входят флюоритовая линза 20, зеркало 16, имеющее центральное отверстие и расположенное под углом 45° к оптической оси лиизы, диафрагмы 15 и /7, конденсор 18 и источник света 19,  [c.88]

На рис. 11.3 представлены диаграммы точечных измерений САЭ в скв. 1964 до и после АВ, полученные для энергии САЭ в двух частотных диапазонах. Увеличение сигналов САЭ после АВ происходит во всем интервале продуктивного пласта, причем вклад в полную энергию сигнала и в его изменение вносят, главным образом, высокочастотные составляющие спектра. На рис. 11.3 (а и б) также приведены результаты измерения температуры после проведения термогазохимического и акустического воздействия. Изменение температуры напротив нижнего интервала продуктивного пласта (рис. 11.3-а) указывает на приток нефти после АВ.  [c.334]

Термодинамические температуры всех реперных точек МПТШ-68 были получены только на основе газовой термометрии. Единственное исключение составляло значение точки кипения равновесного водорода е-Нг, выбранное с учетом измерений в НБЭ с акустическим термометром. Последние данные о численных значениях термодинамических температур выше 13,81 К также в основном опираются на измерения с газовым термометром, хотя и существуют довольно точные акустические данные вплоть до 20 К, а также сведения об отношениях температур, найденных оптическим и шумовым методами выше 630 °С, и результаты измерения полного излучения между 327 и 365 К- Различные уточнения были получены методом магнитной термометрии вплоть до 90 К, однако, как будет показано в гл. 3, магнитная термометрия не является первичной и не может существовать независимо.  [c.61]

Принципиально новые сведения о термодинамической шкале при низких температурах были получены Берри с газовым термометром НФЛ в интервале от 2,6 до 27,1 К [4]. Эти данные были подтверждены при новых измерениях с шумовым термометром до 4,2 К [40], с акустическим термометром от 4,2 до 20К [20] и с новым типом газового термометра [28, 29], где использована температурная зависимость диэлектрической проницаемости. Применив диэлектрический газовый термометр в качестве интерполяционного прибора, Гьюген и Мичел подтвердили данные Берри в интервале от 4,2 до 27 К-Значения низкотемпературных реперных точек установленной Берри шкалы НФЛ-75 приведены в табл. 2.5.  [c.63]


В термометрии по абсолютным изотермам или в методе ГТПО, которые основаны на законе Бойля, необходимо знать в первом случае количество молей газа в газовой колбе, а во втором — значения второго, а возможно, и третьего вириаль-ного коэффициента. Выше отмечалось, что развитие газовой термометрии на основе зависимости температуры от какого-либо интенсивного свойства газа позволяет получить существенные преимущества. Такими свойствами газа могут быть скорость звука, коэффициент преломления и диэлектрическая проницаемость. Метод будет первичным (см. гл. 1), если для измеряемой величины и термодинамической температуры можно написать зависимость, в которую входят только То, R, к п другие постоянные. Эти постоянные не должны зависеть от термодинамической температуры. Из трех методов, которые основаны на измерении перечисленных интенсивных свойств, наиболее развита акустическая термометрия, поэтому рассмотрим ее прежде всего.  [c.98]

В многочисленных областях применения желательно иметь измеритель проходного типа, который использует для измерения лишь малую часть энергии лазерного луча. Такими измерителями являются оптико-акустические детекторы [108]. Их преимущества заключаются также и в том, что они дают достаточно высокий уровень сигнала и сохраняют линейность в области малых энергий. Лазерный луч проходит по оси измерительной ячейки, окна которой изготовлены из Na l. Ячейка заполнена смесью гелия с парциальным давлением, соответствующим атмосферному, и поглощающего газа типа пропилена с давлением в несколько миллиметров ртутного столба. Газ, нагретый в области прохождения луча, адиабатически расширяется до тех пор, пока во всей ячейке давление не станет одинаковым. Распределение температуры газа по всей ячейке тоже становится одинаковым. При этом происходит дальнейшее повышение давления до уровня, определяемого изотермой, а не адиабатой. Измерение давления производится с помощью пьезоэлектрического датчика, сигнал которого подается на осциллограф.  [c.97]

Для трубных сталей в рассматриваемом диапазоне температур (выше Ti) существенно различаются значения критического раскрытия вершины трещины, соответствующие инициированию вязкого разрушения бс и переходу его в нестабильное состояние бс. При лабораторных испытаниях характеристика бе соответствует условиям достижения максимальной нагрузки и последующего полного разрушения образца. Авторы работ [7, 8] отмечают, что в вязком состоянии величина б,- зависит от типа образца, отношения его геометрических размеров и схемы нагружения. Сопротивление материалов возникновению вязкого разрушения б практически не чувствительно [8, 9] к указанным выше факторам и определяется на диаграмме нагрузка — перемещение берегов дефекта моментом первого стра-гивания трещины. В случае незначительного различия между бе и б он может быть зафиксирован на диаграмме скачком перемещения, наблюдающимся при инициировании трещины. В последнее время разрабатываются инструментальные методы установления момента возникновения вязкого разрушения, основанные на измерении электропотенциала, обработке сигналов акустической эмиссии и ультразвуковой дефектоскопии [10]. В настоящей работе величина бс определялась по результатам испытаний нескольких образцов, предварительно нагружаемых до различных уровней раскрытия вершины трещины. После разгрузки образцы охлаждались до температуры жидкого азота и окончательно разрушались. На поверхности излома измерялась величина приращения длины трещины  [c.282]

В гидравлической лаборатории Миннесотского университета Рапкиным и Олсоном для измерения содержания свободного газа в зоне проточной кавитации был применен а сустический метод, в котором концентрация газа измерялась с помощью скорости распространения акустического импульса эта скорость сопоставлялась с аналогичной скоростью для воды, свободной от газа. Источником звука служил специально спроектированный магнитострикционный датчик (гидрофон), дающий импульс выбранной частоты. Сигнальная волна датчика подавалась на стандартный осциллоскоп, по которому определялось время прохождения звуковой волны. Прибор обеспечивал удовлетворительное измерение концентрации свободного газа в диапазоне от 1 до 300 частей на миллион по объему при нормальной температуре и пониженном давлении.  [c.116]

Кратко охарактеризуем наиболее распространенные влияющие факторы. Температура является смешанно-действующим фактором. Однако ее воздействие на датчики с генераторными МЭП носит главным образом мультипликативный характер (аддитивно проявляются только перепады температуры). Деформация объекта измерения также относится к смешанным факторам, хотя ее аддитивное действие обычно преобладает. Давление окружающей среды действует аналогичным образом. Вибрация обычно считается действующей аддитивно, если она не выводит МЭП из нормального режима работы. Медленное ускорение влияет аддитивно, пока суммарный сигнал датчика не превышает значения, соответствующего верхнему пределу измерения. Магнитное поле оказывает мультипликативное действие только на те датчики, чувствительность которых в значительной степени зависит от него, например с гальва-номагнитным МЭП, в остальных случаях его воздействие аддитивно. Электрическое поле аналогично магнитному по характеру влияния. Акустическое давление действует аддитивно. Проникающая радиация может считаться смешанным, но преимущественно мультипликативным фактором. Время также оказывает мультипликативное воздействие, если продолжительность измерения значительно меньше периода проявления старения.  [c.217]

Метод резонансного прозвучивания, как МНК для определения дефектов в сотовых конструкциях с облицовками из армированных пластиков, был использован для контроля абляционных удлинителей сопл ракетных двигателей [19]. Было показано, что обнаруживаемые дефекты расслоения как в наружной, так и во внутренней облицовке из стеклоламината на основе фенольной смолы при измерении с одной стороны удлинителя имеют размер не менее 6,45 см . Могут быть определены и нарушения адгезионной связи облицовочных слоев (обшивок) с сотовым заполнителем. Акустическую связь головки с изделием обеспечивала липкая пленка Майлар (металлизированная полиэфирная пленка). Попытка использовать для акустической связи очищаемое покрытие ставит другие проблемы — на поверхности ламината после удаления покрытия остаются следы, ухудшающие качество изделия. Колебания окружающей температуры при этом методе контроля делают показания приборов неустойчивыми и их нужно избегать.  [c.474]

Основными критериями при определении предела выносливости и других характеристик сопротивления усталости и построения кривых усталости являются полное разрушение образца или появление трещин заранее заданного размера, например, трещин, протяженность которых по поверхности составляет 0,5—1,0 мм. Дополнительными критериями могут быть резкое падение нагрузки или частоты циклов, значительный рост деформации, резкий подъем температуры, уширение петли гистерезиса, а также характеристики, обусловленные накоплением усталостной повреж-денности, возникновением и развитием усталостных трещин, что выявляется измерением твердости, а также электрическими, магнитными, токовихревыми, акустическими (ультразвук, акустическая эмиссия) и другими методами.  [c.310]

СОг-лазеры с успехом могут работать как в непрерывном, так и в импульсном режимах. Для доплеровской локации важна ширина спектра выходного лазерного излучения, а также возможность перестройки его частоты. Существующие передающие устройства на основе непрерывных СОг-лазеров выходной мощностью порядка 10 Вт обеспечивают ширину спектра в несколько килогерц (при измерении в течение интервала времени меньшего 1 с) даже без специальных схем подстройки частоты [65, 66]. Внешний вид лазера этого типа показан на рис. 4.10. Главным источником нестабильности частоты выходного излучения является изменение длины резонатора, вызванное изменениями температуры, вибрациями основания лазера, акустическими шумами, распространяющимися через воздух, и т. п. Поэтому для повышения стабильности частоты продольные стержни резонатора изготавливаются из материалов с малым коэффициентом температурного расширения инвара, суперинвара [59]. Для гашения вибраций применяются прокладки из вязких материалов типа свинца, му-металла и др.  [c.175]

Измерение методом сравнения (жидкость сравнения — дистиллированная вода, Г=7,1+0,2). ТемпературагСС. Частота 1,5 Мгч [31]. 2) Измерения искажения оптическим методом. Температура комнатная. Частота 570 кгц [28]. 3) Измерение искажения с акустическим фильтром. Оптическое определение параметров второй гармоники [40]. Частота 3 Мгц. 4) По взаимодействию двух волн [23]. 5) Измерение методом сравнения (жидкость сравнения — ацетон, Г=10,0). Температура —195°С. Частота Ь Мгц [41]. Эти данные исправлены с учетом измерений скорости в кипящем жидком азоте. 6) Данные, использованные для сравнения экспериментального поглощения с теоретическим [42]. 7) Термодинамический расчет по экспериментальной зависимости скорости звука от температуры и давления [43]. 8) Расчет по Г=р со7Р, из статических измерений [38]. 9) Термодинамический расчет по экспериментальной зависимости скорости звука от температувы и давления [39]. 10) Данные статических измерений [38]. И) Измерение методом сравнения (жидкость сравнения—бутиловый спирт, Г=9,6). Частота 2 Мгц.  [c.166]



Смотреть страницы где упоминается термин Измерение температуры акустическое : [c.109]    [c.34]    [c.225]    [c.316]    [c.70]    [c.100]    [c.111]    [c.130]    [c.273]    [c.359]    [c.84]    [c.55]   
Ультразвук и его применение в науке и технике Изд.2 (1957) -- [ c.316 , c.429 ]



ПОИСК



Акустические измерения

Измерения температур

Импульсные мето. б. Акустические измерения при изменении температуры и давления



© 2025 Mash-xxl.info Реклама на сайте