Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Слоистые композиты поверхности разрушения

Глава открывается кратким обсуждением наиболее распространенных методов определения вязкости разрушения композитных материалов. Затем рассмотрено разрушение композитных материалов, упрочненных волокнами и частицами, а также слоистых композитов, причем особое внимание уделено волокнистым системам направленной кристаллизации. Наряду с экспериментальными данными для каждого класса материалов представлена сводка соответствующих теоретических результатов. В конце главы приводится обзор данных по разрушению композитов и обсуждается влияние поверхности раздела.  [c.267]


Слоистые композиты, как показано, обладают тем преимуществом, что в них слабые плоскости могут быть ориентированы желательным образом. Эти композиты можно использовать как материал, задерживающий или распределяющий трещину. В первом случае можно обеспечить максимальную вязкость разрушения на основании известных соотношений между вязкостью разрушения и толщиной. В обоих случаях поверхность раздела может быть почти так же прочна, как матрица, что не отражается на наблюдаемых закономерностях поведения композита однако заметное снижение прочности поверхности раздела может привести к ухудшению других свойств.  [c.305]

В заключение заметим, что наши предыдущие количественные результаты относятся к весьма простому случаю равномерного нагружения деталей. В реальных конструкциях напряжения обычно распределены неравномерно. В этом случае рассмотрение должно вестись на основе более сложного соотношения (2), в котором вероятность разрушения при параметре нагружения не больше Р определяется интегрированием по всей поверхности (или объему) с весовой функцией напряжения. Частное приложение этой теории будет дано ниже при рассмотрении разрушения слоистых композитов.  [c.174]

ЦИКЛОВ С использованием соответственно пересчитанных механических характеристик материала. Предположим, что рассматриваемый слоистый композит содержит начальную поперечную сквозную трещину длиной 2а. Тогда первые несколько циклов нагружения при заданных отношениях напряжений и амплитуды максимального напряжения не приведут к существенным изменениям напряженного состояния у кончика трещины. Последующее длительное воздействие циклической нагрузки вызовет изменения в матрице, волокнах и поверхности раздела. Этот процесс описывается уравнениями (2.6), (2.7). Наступает момент, когда характеристики жесткости и прочности композита изменяются настолько, что появляется возможность распространения трещины в наиравлении нагружения, как показано на рис. 2.27. Вначале рост трещины устойчив — это было показано ранее. Следовательно, геометрия образовавшейся трещины такова, что материал еще может безопасно подвергаться дальнейшему нагружению. При этом продолжается уменьшение модулей упругости и прочности, что, вероятно, вызывает ускорение роста трещины. В конечном итоге после многократного повторения циклов нагружения свойства материала ухудшаются настолько, что при амплитудном значении напряжения трещина прорастает катастрофически и наступает усталостное разрушение. Однако следует иметь в виду, что в результате действия механизмов, тормозящих разрушение, как в случае слоистого композита со схемой армирования [0°/90°] , усталостное испытание может закончиться разрушением образца вследствие падения его прочностных свойств. В процессе усталостного нагружения могут, кроме указанного, проявиться и другие механизмы разрушения, такие, как разрушение волокон в окрестности кончика трещины из-за высокой концентрации напряжений. За этим может последовать распространение поперечной трещины, как показано на рис. 2.31, или межслойное разрушение (расслоение) вблизи надреза (рис. 2.16), или вдоль свободных кромок образца (рис. 2.17). В любом из этих случаев развитие процесса разрушения поддается предсказанию. Получив количественную оценку протяженности области разрушения (определяемой как а или а), можно установить соотношения da/dN или da/dN и сравнить их с экспериментальными данными.  [c.90]


Вариант метода, использованный автором, предполагает, что материал слоя имеет различную прочность при растяжении и сжатии, но его упругие константы не зависят от знака приложенной нагрузки. Составленная для ЭЦВМ программа позволяет построить полную поверхность прочности (в главных осях слоистого композита), пспользуя любые приращения приложенных касательных напряжений ). При нагружении в любом направлении пространства напряжений можно получить исчерпывающую информацию о диаграммах деформирования композита вплоть до разрушения. Программа выделяет слои, в которых достигнуто предельное состояние. При этом делается различие между разрушением по волокну (предельной величины достигают напряжения, действующие вдоль волокон) и по связующему (предельных значений достигают или касательные напряжения, или напряжения, действующие перпендикулярно волокнам).  [c.153]

Большинство критериев прочности слоистых композитов основано на свойствах отдельных слоев материала. Поверхность прочности строится по соответствующему критерию и свойствам материала для каждого слоя. Внутренняя огибающая поверхностей прочности всех слоев, построенная в системе координат композита, образует поверхность разрушения данного композита. Нагрузки, воспринимаемые композитом, определяются по теории слоистых сред, при этом по мере выхода из строя отдельных слоев производится перерасчет распределения нагрузок между слоями.  [c.165]

Диапазоны линейных и нелинейных упругих свойств композитов. могут отличаться от соответствующих диапазонов компонент [13, 14]. Композиты имеют иногда разные модули при растяжении и сжатии, хотя модули упругости их компонент не зависят от знака приложенного напряжения [15] ). При анализе разрушения и несущей способности слоистого композита различают поведение слоя в составе композита в зависимости от схемы армирования и последовательности укладки слоев и поведение этого же слоя, как самостоятельного материала [16]. Это различие трудно объяснить с позиций анализа однородных слоистых сред. При использовании этого анализа появляются затруднения и в объяснении обнаруженного экспериментального влияния свободной поверхности и кромок на предельные напряжения и жесткость слоистых композитов [17].  [c.250]

Установлено, что разрушение слоистого композита — сложный, зависящий от времени процесс, сопровождающийся целым рядом различных видов повреждения регулярной структуры материала [1]. Фактически процесс разрушения может начаться во время изготовления композита или при низком уровне приложенного напряжения. Большинство очагов нг чального повреждения представляет собой докритические микротрещины, которые развиваются по всему материалу матрицы, включая поверхности раздела между волокнами и матрицей. Микротрещины по существу являются дефектами материала, которые свойственны его основной композитной системе либо появляются в нем во время изготовления. Когда материал подвергается механическому нагружению, могут увеличиваться как число микротрещин, так и их размеры. R частности, некоторые микротрещины могут внезапно объединяться и образовывать большую трещину в матрице, когда локальное напряжение достигает некоторого критического значения.  [c.89]

Экспериментальные исследования в сочетании с аналитическими моделями дают возможность лучше понять фундаментальную природу механизмов разрушения композитов и, в частности, расслоения. Межслойные напряжения, действуя вблизи свободной кромки, обусловливают появление расслоения. Распределения и величины меж-слойных нормального и касательного напряжений изменяются в широких пределах в зависимости от последовательности укладки слоев композита и типа его компонентов. Начало расслоения нетрудно прогнозировать, когда определяющим фактором является межслойное нормальное напряжение. Однако точность прогноза снижается, когда касательное напряжение превышает нормальное. Расслоение обычно происходит по той же поверхности раздела, где (среднее) межслойное растягивающее напряжение достигает максимума. Трансверсальное растрескивание матрицы может сильно влиять как на начало расслоения, так и на расположение его зоны. Разработка аналитических моделей, учитывающих влияние трансверсального растрескивания на расслоение, еще впереди. В большинстве случаев расслоение приводит к значительному снижению жесткости и прочности слоистого композита. Приемы, позволяющие воздействовать на процесс расслоения, включают применение более пластичной матрицы или изменение последовательности укладки слоев с подкреплением свободной кромки.  [c.192]


На рис. 132 приведены зависимости усталостной прочности слоистых материалов от величины пористости на границах компонентов, соответствующие кривым усталости, построенным на рис. 130. Полученные зависимости совпадают качественно с имеющимися экспериментальными и теоретическими оценками (см. рис. 122) [2]. Расчетные кривые усталости не всегда сопоставимы с экспериментальными, так как процесс усталостного разрушения имитируется на ЭВМ в предположении постоянства амплитуды нагрузки, а экспериментальные данные по усталостной прочности плоских образцов получены в условиях постоянства амплитуды деформаций [2], Однако сопоставление результатов испытания на усталость отдельных стальных пластинок и пакетов из этих пластин, полученных сваркой взрывом, с расчетными кривыми усталости для различных значений пористости (см. рис. 131) показывает, что расчетные кривые располагаются между кривыми усталости отдельных пластин и слоистого материала. Принимая во внимание такие факторы, как упрочнение и возможные структурные изменения в компонентах в процессе сварки взрывом и последующей термообработки, сопоставление расчетных кривых с имеющимися экспериментальными данными показывает, что предложенный подход в целом позволит прогнозировать усталостные свойства композитов с учетом состояния поверхностей раздела между компонентами.  [c.246]

Высказывалось предположение, что возможны случаи, когда предпочтительна слабая поверхность раздела. Согласно Куку и Гордону [12], поле напряжений у вершины развивающейся трещины включает не только главные напряжения, стремящиеся раскрыть трещину в направлении ее распространения, но и напряжения, стремящиеся раскрыть ее в перпендикулярном направлении. Значит, эти дополнительные напряжения могут раскрывать плоскости с ослабленной связью, пересекаемые магистральной трещиной. Эм бери и др. [17] применили эти представления к случаю разрушения слоистых композитов. Они показали, что в пакете стальных листов распространение трещины задерживается процессом расслаивания это приводило к важному результату — снижению температуры перехода от вязкого разрушения к хрупкому более чем на 100 К. Эти исследования были продолжены Олмондом и др. [2], которые получили ряд новых данных об указанном типе структур, тормозящих распространение трещины. По очевидным соображениям аналогичный подход применим и к волокнистым композитам этот вопрос рассмотрен в гл. 7 в связи с проблемой разрушения. Значительные объемы композита, расположенные по обе стороны от магистральной трещины, могут быть охвачены одновременным действием различных механизмов разрушения, а в таких случаях, как показали Эдсит и Витцелл [1] на примере композитов алюминий — бор, вязкость разрушения композита может превосходить вязкость разрушения металлической матрицы.  [c.25]

Общий метод построения предельной поверхности для слоистого композита состоит в следующем предполагая совместность деформирования слоев композита при заданном илоском напряженном состоянии, рассчитывают напряжения в плоскости и деформации каждого отдельного слоя. Определенное таким образом наиряженно-деформированное состояние слоя сравнивается с критерием прочности каждого слоя предполагается, что первое разрущение слоя ) вызывает разрушение слоистого композита в целом. В действительности дело обстоит сложнее, поэтому необходимо углублять понимание особенностей поведения слоистого композита при таких уровнях напряжений, когда в соответствии с выбранным критерием в некоторых слоях уже достигнуто предельное состояние. В зависимости от вида напряженного состояния напряжения, соответствующие началу разрушения слоев, могут не совпадать с экспериментально определяемыми предельными напряжениями композита в целом. Как правило, совпадение наблюдается, если первое разрушение слоя происходит по волокну (по достижении предельных напряжений в направлении армирования). В остальных случаях, когда критерий предсказывает для слоя разрушение по связующему (от нормальных напряжений, перпендикулярных направлению армирования, от касательных — межслойных или в плоскости), экспериментально определенные предельные напряжения композита не соответствуют теоретически подсчитанным. Как теория, так и экспериментальные наблюдения указывают, что подобное поведение слоистых композитов объясняется взаимодействиями между различно ориентированными слоями. Меж-слойные эффекты могут наблюдаться как у свободных кромок, так и внутри материала, когда слои разрушаются от растяжения перпендикулярно направлению армирования или от сдвига в плоскости армирования.  [c.50]

Практика показывает, что в большинстве случаев именно разрушение матрицы или поверхности раздела между волокном и матрицей, а не разрушение волокон арматуры является причиной выхода из строя изделий из композитов. Углубленное понимание этих явлений позволит полнее использовать свойства композитов. Поэтому основные усилия следует направить иа дальнейшее исследование возникновения и развития докрити-ческих видов разрушения в слоистых композитах. Немало предстоит еще сделать и по изучени]0 влияния этих видов разрушения на поведение композитов при последующем нагружении.  [c.104]

Теоретически предсказанные деформационные зависимости и предельные напряжения для различных слоистых композитов сравниваются с результатами испытаний этих материалов в условиях плоского напряженного состояния. Указаны преимущества и недостатки основных типов образцов и соответствующего оборудования, используемого для создания плоского напряженного состояния. При сравнении методов построения предельных поверхностей слоистых композитов особое внимание уделено областям их применения, удобству использования, требованиям к исходным параметрам и тонкостям описания этими методами прочностных свойств реальных композитов. Поскольку большинство методов ограничивается построением предельной поверхности и, следовательно, позволяет предсказать только условия, но не вид разрушения, в главе преобладает макроподход. Оказалось, что ни один из рассмотренных методов не обнаруживает хорошего соответствия с результатами экспериментов и, следовательно, не может быть рекомендован для использования при проектировании ответственных силовых конструкций из композитов, причина этого заключается, по-видимому, в малочисленности экспериментальных данных н несовершенстве существующих подходов в частности, ни один из подходов не учитывает влияние последовательности укладки слоев на напряженное состояние композита. До сих пор остается неисследованным механизм перераспределения нагрузок со слоев композита, в которых достигнуто предельное состояние, на остальные слои материала.  [c.140]


В главе обсуждаются методы и результаты испытаний слоистых композитов в условиях плоского напряженного состояния в свете существующих теорий пластичности и прочности этих материалов. Коротко рассмотрены наиболее общие критерии предельных состояний анизотропных квазиод-нородных материалов и различные варианты их применения для построения предельных поверхностей слоистых композитов оценена точность описания при помощи этих критериев имеющихся экспериментальных данных В качестве самостоятельного раздела изложены основы теории слоистых сред. Так как рассмотренные методы предсказывают главным образом начало процесса разрушения, в докладе преобладает макроскопический подход. Однако в ряде случаев затрагиваются и вопросы, связанные с развитием процесса разрушения. Рассмотрены основные типы образцов для создания двухосного напряженного состояния, подчеркнуты их преимущества и недостатки. Показано, что сравнительно хорошее совпадение расчетных и чксперимептально измеренных предельных напряжений наблюдается для методов, учитывающих изменение характеристик жесткости слоев композита в процессе нагружения вплоть до разрушения. Основное внимание в главе уделено соответствию предсказанных и экспериментально полученных данных. Высказаны некоторые соображения о целесообразных направлениях дальнейших исследований.  [c.141]

Критерий предельного состояния, используемый в рассматриваемом подходе, представляет собой распространение теории наибольших нормальных деформаций Сен-Венана на анизотропные материалы. Поскольку компоненты деформации, определяющие несущую способность ортотропного слоя, могут быть отнесены к трем главным осям, в критерий включены три главные деформации. В первоначальной формулировке метода предполагалось, что материал слоя линейно упругий вплоть до разрущения, поэтому предельное состояние наступает и при достижении предела текучести. Слой считается разрушенным, когда любая деформация в нем — в направлении волокон, в поперечном направлении или сдвиговая—достигает предельного значения, определенного из эксперимента при одноосном напряженном состоянии. Предельная поверхность слоистого композита в целом представляет собой внутреннюю огибающую предельных поверхностей ьсех слоев материала, приведенных к его главным осям.  [c.148]

В сущности все методы построения предельных поверхностей слоистых композитов предполагают использование линейно упругого подхода при определении напряженного состояния материала. Из этого однозначно следует, что для слоя достижение предела текучести равносильно исчерпанию несущей способности. В результате расчетная диаграмма а(е) композита получается или линейной или кусочно линейной, если отдельные слои, составляющие композит, достигают предельного состояния еще в процессе нагружения, до разрушения композита в целом. Многие из практически используемых видов однонаправленных композитов в действительности деформируются нелинейно при действии касательных напряжений и напряжений, перпендикулярных направлению армирования. В результате и диаграмма деформирования слоистого композита в целом может оказаться нелинейной. Более того, отдельные слои композита могут обладать  [c.149]

Как и в большинстве методов построения предельных поверхностей слоистых композитов, считается, что разрушение локализовано в слое, для которого выполнен критерий проч-ностп. После изменения упругих свойств разрушенного слоя в соответствии с его новым состоянием снова определяются эффективные значения матриц жесткости и податливости композита. Действующие на композит нагрузки теперь воспринимают слои, в которых предельное состояние еще не достигнуто. Процесс ступенчатого приложения нагрузки повторяется до разрушения слоистого композита в целом. Считают, как правило, что для полной потери несущей способности композитом достаточно, чтобы по крайней мере в двух слоях было достигнуто предельное напряжение (деформация) в направлении волокон.  [c.153]

На рис. 2.5 приведена микрофотография расслоения кромки в другом образце [ 45°/0°/90°] , нагруженном почти до его окончательного разрушения. Здесь в дополнение к начальному расслоению в слое 90° также появляются внутрислойные трещины и расслоения на поверхностях раздела -1-45°/-45° и -45°/0°. Микрофотография свидетельствует о том, что на этой, завершающей, стадии нагружения растрескивание матрицы слоистого композита является процессом, включающим различные виды разрушения многие из них могут проявляться во всех слоях, несмотря на то что композит в целом еще воспринимает нагрузку.  [c.95]

Рис. 3.8. Микрофотографии поверхности разрушения расслоением, полученные с помощью сканирующего электронного микроскопа. Образец графито-эпоксидного слоистого композита Т300/1034С, нагруженный сжатием, а — срединная плоскость, схема армирования (02/902/ 452) б — поверхность раздела слоев -И 30°/-30° для схемы армирования (90у 304. Рис. 3.8. Микрофотографии <a href="/info/28817">поверхности разрушения</a> расслоением, полученные с помощью <a href="/info/178533">сканирующего электронного</a> микроскопа. Образец графито-эпоксидного слоистого композита Т300/1034С, нагруженный сжатием, а — <a href="/info/20483">срединная плоскость</a>, <a href="/info/330252">схема армирования</a> (02/902/ 452) б — <a href="/info/26134">поверхность раздела</a> слоев -И 30°/-30° для схемы армирования (90у 304.
Известно, что перекрестно армированные слоистые композиты с углом укладки менее 15° разрушаются при гораздо меньших напряжениях, чем это следует из обычной теории прочности [31]. Ротем и Ха-шин установили, что доминирующим видом разрушения перекрестно армированных слоистых композитов при углах менее 45° является межслойный сдвиг [32]. В работе [5] было показано, что в некоторых слоистых композитах развивается высокое (теоретически бесконечное) межслойное сдвиговое напряжение [5]. Например, как показано на рис. 3.31, в, графито-эпоксидный слоистый композит ( 30°/90°) , кроме нормального напряжения в срединной плоскости, на поверхности раздела слоев -I- 30°/- 30° имеет высокое межслойное напряжение Tj . При нагружении композита растяжением значение R для срединной плоскости меньше, чем для поверхности раздела -I- 30°/- 30°, однако при сжатии ситуация меняется на обратную. Известно, что разрушение начинается, когда Л = 1, и запас прочности тем больше, чем выше R по сравнению с единицей. Причина изменения R в рассматриваемом случае состоит в том, что величина компоненты нормального напряжения остается неизменной, а знак меняется (рис. 3.31, а). Прочность при сжатии в трансверсальном направлении графито-эпоксидного слоистого композита почти в четыре раза вы-  [c.171]

Прочность поверхности раздела в углепластиках выше, чем в бор-эпоксидных композитах, что обусловливает две их особенности поведения. Во-первых, трещины в углепластике более извилисты (рис. 23, а) во-вторых, в углепластике наблюдается межслое-вое разрушение (рис. 24). Последнее является одним из специфических видов разрушения слоистых материалов и выражено наиболее ярко в случаях значительного межслоевого сдвига.  [c.296]

Простейшие слоистые материалы состоят из связанных гомогенных изотропных пластин. При изготовлении этих материалов слабые плоскости можно располагать благоприятным образом — так, чтобы обеспечить высокую вязкость разрушения композита. Рассмотрим идеализированный слоистый материал, изображенный на рис. 25. Поле напряжений перед трещиной задается уравнением (2). На небольшом расстоянии перед вершиной трещины развиваются поперечные растягивающие напряжения 0 . Они, в сочетании со сдвиговыми напряжениями Хху (возникающими при любых зиачениях угла 0, кроме 0=0°), могут вызвать межслоевое разрушение. Маккартни и др. [24] изучали сопротивление развитию трещины слоистого материала из высокопрочной стали (203 кГ/мм ) для случаев низкой, средней и высокой прочности связи. Связь низкой прочности (3,5—7,0 кГ/мм ) обеспечивали с помощью эпоксидных смол, а также оловянного и свинцово-оловянного припоя, связь средней прочности (38—60 кГ/мм )—с помощью серебряного припоя, а высокопрочную связь (140 кГ/мм ) — путем диффузионной сварки слоев. Во всех случаях при испытании на ударную вязкость по Шарпи образцы разрушались лишь до первой плоскости соединения слоев. Остальная часть образца сильно деформировалась и расслаивалась по той же поверхности раздела, но не разрушалась. Сходные результаты получил и Эмбе-ри с сотр. [9]. Если прочность связи уступает прочности листов, то происходит торможение трещины. Ляйхтер [23], однако, установил, что охрупчивающая фаза, возникающая при использовании некоторых твердых припоев, может существенно снизить вязкость разрушения.  [c.296]


Не существует единого мнения относительно того, зависит или не зависит прозрачность (непрозрачность) слоистого пластика из аппретированных волокон от способности их поверхности смачиваться смолой. Визуальные наблюдения показали, что очищенные стекловолокна полностью смачиваются жидкой смолой и полиэфирный композит на их основе очень прозрачен в процессе изготовления и отверждения, но становит1ся мутно-белым после охлаждения. Непрозрачность слоистого пластика обусловлена возникновением мелких трещин в смоле или разрушением адгезионного соединения на поверхности раздела из-за усадочных напряжений и не связана со смачиванием стекла смолой. Хорошая аппретирующая добавка до известной степени предотвращает образование трещин и разрыв адгезионной связи и позволяет получать прозрачный СЛОИСТЫЙ материал. Вообще имеется коррел-я-ция между механическими характеристиками слоистого пластика и прозрачностью композита из аппретированного стекловолокна и смолы.  [c.35]

Идеи классической мелаиики разрушения в настоящее время используются при исследовании задач усталости для определения амплитуды интенсивности напряжений А/С в уравнении (2.5) пли скорости высвобождения энергии деформирования G. Чтобы убедиться в принципиальной пригодности для композитов эмпирического подхода в форме (2.5), нужно рассмотреть основные постулаты классической механики разрушения. Чрезвычайно важно, в частности, чтобы трещина распространялась линейно, т. е. не меняя первоначального направления. Поскольку в слоистом композите может быть несколько плоскостей слабого сопротивления (например, сдвигу или поперечному отрыву), поперечная сквозная трещина в нем будет прорастать в направлении наименьшего сопротивления. Наличие такого направления определяется матрицей (в плоскости слоя и между слоями) и поверхностью раздела волокно — матрица.  [c.86]

В квадратичных критериях прочности, подобных критерию Хилла, смешанная компонента определяется через другие компоненты и не является независимой. В теориях типа теории наибольших нормальных напряжений (деформаций) принципиально не может быть взаимного влияния напряжений, так как критерий прочности задается в виде системы независимых неравенств, выполнение любого из которых означает достижение предельного состояния. Как и в модифицированном критерии Хилла, в критерии Цая — By используются предельные напряжения материала слоя при растяжении и сжатии. При построении предельных поверхностей на основании критерия Цая — By используется теория слоистых сред (предполагается, что материал слоя линейно упругий). Метод ограничивается оценкой возможности разрушения композита для заданного напряженного состояния, при этом не делается никаких предположений относительно причин разрушения (т. е. не анализируются компоненты тензора напряжения слоя, соответствуюшего достигнутому предельному состоянию).  [c.155]

Как отполированные парафином поверхности, так и нанесенные напылением парафиновые покрытия являются превосходными антиадгезионными смазками для композитов, отверждающихся при температурах ниже 121 °С. Однако при более высоких температурах парафин вызывает разрушение и обесцвечивание слоистого пластика. В этих случаях для смазывания рекомендуется применять промышленные марки фторированных углеводородов.  [c.88]


Смотреть страницы где упоминается термин Слоистые композиты поверхности разрушения : [c.455]    [c.143]    [c.40]    [c.233]    [c.22]    [c.467]   
Разрушение и усталость Том 5 (1978) -- [ c.116 ]



ПОИСК



Композит

Поверхность разрушения

Поверхность разрушения композита

Разрушение композитов

Слоистые композиты



© 2025 Mash-xxl.info Реклама на сайте