Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Окисные пленки на поверхности раздела

Окисные пленки на поверхности раздела 170  [c.431]

Большинство материалов, применяющихся в качестве упрочняющих волокон или нитевидных кристаллов, при температурах пропитки в большей или меньшей степени склонно к окислению, в результате которого могут значительно снизиться их свойства. Кроме того, образование окисной пленки на поверхности упрочняющих волокон изменяет условия смачиваемости волокон расплавом матрицы и влияет на величину и характер прочности связи на границе раздела матрица — волокно, поэтому изготовление композиционных материалов методом пропитки расплавом осуществляется главным образом либо в защитной атмосфере, либо в вакууме. Причем вакуум во многих случаях является более предпочтительной средой, активирующей поверхность пропитываемых волокон и улучшающей условия смачиваемости.  [c.98]


Антифрикционные свойства материалов в среде натрия зависят также от интенсивности протекания химических реакций на границе раздела. Хотя в опытах производились фильтрация натрия (окислы отделялись) и очистка аргона от кислорода и влаги, незначительные их количества могли присутствовать, а этого достаточно для регенерации окисных пленок на поверхностях, резко изменяюш,их условия трения.  [c.76]

На рис. 15, на котором представлен разрез основы из железа-Армко после отделения окисной пленки, вдоль поверхности раздела Fe — FeO наблюдается тонкая полоса, толщина которой постоянна и равна приблизительно 30 [х. Ее состав и структура отличаются от состава и структуры металлической основы, так как она мало чувствительна к химическому травлению. Если химическое травление довольно продолжительно, что имеет место в данном случае, то на поверхности раздела Fe —FeO металл кристаллизуется в виде очень мелких зерен.  [c.106]

Исследования э. д. с. цепи и силы тока пары подтвердили высказанное в разделе 3 предположение, что окисная пленка на поверхности титана играет роль катода при травлении титана в щелочных расплавах.  [c.149]

Сущность нового способа заключается в следующем. Свариваемые детали помещают в вакуумную камеру и нагревают до температуры не менее 0,3 при которой диффузионные процессы протекают достаточно интенсивно. Затем два различных металла сжимают с определенными, относительно небольшими, удельными давлениями 9,8—19,6Мм/л4 (1—2 кгс мм ) и выдерживают некоторое время (2—15 мин). Вакуум, т. е. отсутствие воздуха между свариваемыми плоскостями, не позволяет образовываться окисной пленке на поверхности металла. Пластическая деформация слоев отсутствует вследствие небольших удельных давлений, которые обеспечивают лишь прохождение диффузионных процессов на границе раздела слоев.  [c.200]

Процессы происходят и при других способах изготовления например, при изготовлении композита путем пропитки расплавленным металлом вместо механического сдвига, возможно, происходит высокотемпературная эрозия. Третий тип разрушения окисной пленки — ее растворение. Растворимость кислорода в алюминии исчезающе мала, но в таких металлах, как никель, она достаточно велика, чтобы привести к растворению окислов или обеспечить их сфероидизацию по растворно-осадительному механизму. Растворимость кислорода в таких металлах, как титан и ниобий, очень высока, и механизм растворения может создать условия для полного отсутствия окислов на поверхностях раздела.  [c.34]


Специалисты по технологии производства композитов с алюминиевой матрицей придерживаются общей точки зрения относительно оптимальных условий изготовления композита. Если поддерживать, постоянство двух из трех параметров технологического процесса— температуры, давления и продолжительности обработки, то с ростом значения третьего параметра прочность при растяжении вначале растет, затем проходит через максимум и потом снижается. Эти данные согласуются с моделью, предполагающей, чтО на поверхности раздела имеется окисная пленка. Рост прочности при растяжении объясняют уменьшением пористости и улучшением окисной связи между матрицей и волокнами. Снижение прочности при растяжении с увеличением давления, температуры или продолжительности процесса происходит из-за общего разрушения окисной связи и излишнего развития реакции. Оптимальное значение параметров отвечает равновесию между завершением процесса образования связи и началом развития локальной реакции на участках разрушения пленки. При повышенной температуре или продолжительности процесса прессования разрушение пленки может происходить по механизму сфероидизации, а при повышенном давлении — механическим путем вследствие сдвига. Однако наличие оптимальных значений параметров процесса приводит к заметным изменениям состава и строения поверхности раздела. Эти изменения имеют место как в пределах одного образца композита, так и от одной партии горячепрессованного композита к другой, поскольку трудно тщательно контролировать состояние поверхности компонентов, технологические циклы и все остальные параметры, определяющие характеристики поверхности раздела.  [c.170]

Несмотря на очевидный характер влияния окисных пленок на термическое сопротивление контакта металлических поверхностей, до настоящего времени изучению этой проблемы не уделялось должного внимания. С одной стороны, ощущается недостаток в данных об образовании и росте окисных пленок, об их прочности, теплофизических свойствах и изменениях термического сопротивления действительного контакта окисленных поверхностей. С другой стороны, сложный характер процесса теплопереноса на границе раздела фаз в зоне контакта соединений с окисными пленками затрудняет создание теоретической модели, в полной мере соответствующей структуре температурного поля такого соединения.  [c.187]

Схватывание было устранено при толстослойном анодировании поршней с последующей обработкой их дисульфидом молибдена. Толстая анодная пленка может, конечно, разрушить местами защитную окисную пленку на хромовом покрытии, но так как на поверхности поршня покрытие не оголяется, к схватыванию это не приводит. Кроме того, дисульфид молибдена удерживается прочно в течение продолжительного времени на толстой анодной пленке сплава, разделяя поверхности. Возникающие единичные царапины на сопряженных поверхностях заглаживаются к концу приработки.  [c.214]

Рис. 58. Поверхностная окисная пленка железа, полученная в парах воды при 600° С за 6 час. На поверхности раздела Fe — РезО видна фаза FeO, Рис. 58. Поверхностная <a href="/info/211269">окисная пленка железа</a>, полученная в <a href="/info/196301">парах воды</a> при 600° С за 6 час. На <a href="/info/26134">поверхности раздела</a> Fe — РезО видна фаза FeO,
Медь в ряду окисления расположена после железа и в процессе выплавки не окисляется. При образовании на металле поверхностной окисной пленки, например при образовании окалины на горячекатаной стали, медь частично диффундирует на поверхность раздела, обогащая ее и тем самым увеличивая устойчивость против дальнейшего окисления на воздухе. Менее ясен механизм  [c.112]

Введение в выражение (1.17) вместо толщины окисной пленки ее приращения связано со следующим во первых, при Г = Го скорость ползучести, определяемая выражением (1.17), должна быть равна. Uno. что возможно только при толщине пленки, равной нулю, а при испытаниях на воздухе h Ф О, ВТО время как приращение ДЛ (Л при T=Tq может быть равным нулю во-вторых, при интенсивном окислении происходит увеличение толщины окисной пленки, в результате чего увеличивается напряжение сдвига (вследствие разницы в модулях упругости материалов пленки и подложки) на границе раздела "пленка — подложка". Это обусловливает снижение адгезии пленки с подложкой и разрушение пленки она растрескивается и отслаивается. В связи с тем, что процессы разрушения и восстановления окисной пленки происходят не одновременно по всей поверхности образца (в противном случае первичная кривая ползучести в температурном интервале проявления упрочняющего влияния окисления была бы ступенчатой), окисная пленка на различных ее участках должна иметь различную толщину, и выражение (1.17) отражает интегральное влияние отдельных участков образца с различной толщиной окисной пленки.  [c.15]


И в кислороде аналогичны). У нелегированного циркония наличие окисных пленок не оказывает никакого влияния на развитие коррозии в атмосфере пара, в отличие от циркониевых сплавов, окисные пленки на которых менее проницаемы. Пленки, образующиеся на нелегированном цирконии, разрываются гидридами, которые возникают на поверхности раздела фаз металл 1 окисел [70].  [c.453]

Окисный слой образуется в результате диффузии ионов тантала в тонкую окисную пленку, всегда присутствующую на поверхности раздела фаз. Структуру запирающего слоя электрохимически можно представить как анод на границе металл 1 окисел и катод на границе окисел [электролит, а окисный слой — как биполярный электрод , на котором происходит реакция между ионами тантала, диффундирующими через окисную пленку, и адсорбированными ионами кислорода. Предполагается, что часть неподвижных, избыточных ионов тантала встроена -в решетку окисла ( заморожена ) [77].  [c.455]

Металл и окисел оказывают друг на друга механическое воздействие, в последнем обычно возникают сжимающие напряжения, а в металле — растягивающие [5]. Естественно, что наличие этих напряжений способствует отслаиванию окислов по поверхности раздела. На поверхности раздела действуют срезающие усилия, которые в зависимости от прочности окисла и величины адгезии могут привести к отделению окисной пленки точно по границе металла или к ее разрушению по касательной к микровыступам на поверхности металла [5,84]. У. Эванс [92] рассматривает две схемы действия напряжений в пленке окислов (рис. 169).  [c.292]

Обычно сцепление грунта и эмали с чугуном выше, чем со сталью. Это связано с тем, что поверхность чугуна сильно развита (см. рис. 69), а литейная корка пористая. Нанесенный на поверхность чугунной отливки шликер впитывается на значительную глубину. Однако окисная пленка, образующаяся на поверхности раздела, играет ту же роль, что и в случае стали. При хорошей связи окисной пленки с металлом, способности ее взаимодействовать с грунтом также образуется промежуточная зона на границе раздела эмаль—чугун, которая и обеспечивает сцепление.  [c.170]

Дрелей и Разер [2, 4] предполагают, что выделяющийся на поверхности раздела металл—окисел газообразный водород разрушает защитную окисную пленку. Если же алюминий образует пару с более катодными металлами или легирован никелем и железом, то ионы Н" разряжаются не на алюминии, а на катодных  [c.278]

В результате кипячения в течение 1 ч в дистиллированной воде на поверхности алюминия возникает слой бемита толщиной 0,4 мк. Окисная пленка мористая кристаллографическая плоскость (100) решетки бемита параллельна поверхности металла. Предполагается, что бемит образуется при взаимодействии гидроксил-иона с ионом алюминия, мигрирующего от металла. Реакция протекает вначале в порах воздушно-окисной пленки, а затем на поверхности раздела окись—среда [40]. Бемит образуется по реакции  [c.24]

Этот тип связи встречается в системах псевдопервого класса при нарушении стабильности и переходе системы во второй или в третий класс. На рис. 2 видна окисная пленка на поверхности раздела в композите алюминий — бор, в котором с образованием диборида алюминия началось разрушение поверхности раздела. Эти представления о смешанных связях дополняет фотоснимок, полученный в сканирующем электронном микроскопе (рис. 3).  [c.87]

К йсевдоперйому классу, как указывалось выше, относятся системы, ведущие себя аналогично системам первого класса (в которых компоненты взаимно нерастворимы и нереакционноспособны), пока сохраняет ся окисная пленка на поверхности раздела истинный характер иоверХ]Ност.и раздела выявляется ио разрушении окисной пленки. С разрушением пленки в этих системах может начаться реакция (как в системах третьего класса, напр имер алюминий—бор) или растворение компонентов (как в системах второго класса). К последним, возможно, относится система алюминий—карбид кремния, однако, чтобы уточнить класс этой системы, необходимы дополнительные исследования. Если желательно, чтобы композит вел себя как система псевдопервого класса, то в процессе его изготовления необходимо обёспечить сохранение окисной пленки. Этот вопрос и будет обсужден вначале затем рассмотрим, как влияют на продольную прочность изменения поверхности раздела, происходящие после изготовления композита.  [c.169]

Термин значительное изменение химического состава относится также и к малым изменениям, рассмотренным, в частног сти, Грэхемом и Крафтом [20] в связи со стабильностью эвтектических композитов. В этом случае изменения растворимости возникают из-за различия в кривизне поверхностей раздела, как эта следует из соотношения Томсона — Фрейндлиха. Аналогичным образом такому определению удовлетворяют и малые содержания растворенных примесей, ускоряющих рекристаллизацию, что наблюдалось, например, в системе u(Ni)—W [28, 34]. Сюда может быть включен и случай сегрегации элементов на поверхности раздела например, как показано Саттоном и Файнголдом [37], цирконий переходит из никелевого сплава к поверхности раздела с окисью алюминия, что усиливает их связь. Под это определение попадают и связи типа окисных, предложенные для систем псев-допервого класса. Эти связи реализуются между последовательно расположенными фазами от матрицы через поверхность раздела матрица — окисел, окисную пленку и поверхность раздела окисел— упрочнитель к упрочнителю.  [c.18]

Приведенные далее результаты показывают, что зависимость-продольной прочности от толщины реакционного слоя очень напоминает соответствующую зависимость для систем третьего класса (рис. 3). Однако развитая для систем третьего класса теория неприменима к системам псевдопервого класса из-за непостоянства толщины зоны взаимодействия. В микроструктуре образца А16061-—В, отожженного в течение 12 ч при 778 К, заметен нерегулярный рост продукта реакции (AIB2) через участки разрушения окисной пленки (рис. 4). Рост происходит в обе стороны от-пленки, но исходная пленка на поверхности раздела сохраняется. Отсутств Ие пор, возникающих при эффекте Киркендалла , также свидетельствует в пользу предположения о примерном равенстве-  [c.149]


Экстремальный характер зависимости деформации разрушения от прочности, обнаруженный в композитах А16061—45% В после непродолжительных отжигов при 778, 811 и 833 К, связан с одинаковой степенью разрушения пленок на поверхности раздела и с образованием кристаллов диборида алюминия, прорастающих через исходную окисную пленку. Хотя процесс разрушения пленки охватывает крайне незначительную часть поверхности раздела, представляется, что взаимодействие такого рода благоприятно сказывается на продольной прочности.  [c.176]

Окисная пленка на поверхности корродирующего металла образуется за счет диффузии ионов железа через магнетит. На границе раздела окисла и воды ион железа реагирует с гидроксилом или молекулой воды и образует гидрат закиси железа, в итоте образуется магнетит. В воде при температуре 300°С за счет взаимодействия с железом гидрат окиси железа также переходит в магнетит. С течением времени толщина окисной пленки увеличивается, а диффузия попов железа через нее затрудняется. Это обстоятельство ведет к уменьшению скорости коррозии -во времени.  [c.33]

Внутренние слои отложений взаимодействуют с защитными окисными пленками на поверхности труб. На границе раздела защитная окисная пленка металла — отложения находится промежуточный слой, содержащий как продукты коррозии металла, так и агрессивные составляющие отложений. Защитный слой окислов имеет сложное строение снаружи располагаются продукты полного окисления — гематит (РегОз), затем слой магнетита или хромистой шпинели (Рез04 или РеСг04) ближе к металлу при высоких температурах располагается слой Бюстита РеО. Вюстит может отсутствовать при относительно низких температурах поверхности металла. Конкретная температура, с которой появляется в окалине вюстит, зависит от химического состава стали. При наличии в пристенной области восстановительной атмосферы под слоем вюстита на границе с металлом образуется PeS. Подокисные слои металла могут обедняться углеродом и хромом. Иногда по границам зерен в поверхностном слое наблюдается избирательная коррозия. Наилучшими защитными свойствами обладает слой магнетита или хромистой шпинели.  [c.11]

Другим типом поверхностного гетерогенного источника дислокаций, действующего при низких напряжениях сдвига, может служить окисная пленка на поверхности кристаллов, вернее межфазная граница раздела кристалл—окисел. Такое предположение было высказано рядом авторов [33, 123, 350-352]. Судзуки [33] один из первых предположил наличие таких легкодействующих источников при сжатии кристаллов КС1, наблюдая методом фотоупругости возникновение источников сдвига преимущественно вблизи свободной поверхности на ранней стадии деформирования. И.П. Кушнир и Е.Ф. Сидохин [350] объяснили источниками подобного типа появление первых линий скольжения вблизи поверхности микрокристаллов железа, исследованных на ранней стадии деформирования рентгенографическим методом. Ван дер Мерве [351] рассмотрел промежуточный слой на границе субстрата и пленки, напряжения в котором приводят к межфазным дислокациям. Л.С. Милевский с сотр. [352] также отмечали огромную роль окисной пленки, существующей на поверхности монокристалла, которая активирует поверхностные источники дислокаций. Удаление пленки путем ее растворения устраняет большинство поверхностных источников .  [c.99]

Со ступенчатостью превращений в окислах тесно связана зональность процесса восстановления. Сущность ее состоит в том, что в процессе восстановления газ-восстановитель, проникая в микропоры и микротрещины окисной пленки, восстанавливает ее не по всей толщине одновременно. Если окисная пленка на поверхности металла в начальный момент восстановления не содержит включений металла, т. е. твердой фазы, образующейся в процессе восстановления, то скорость восстановления имеет три периода. Первый период — инкубационный, когда адсорбированные молекулы восстановителя вступают во взаимодействие только с наиболее активными участками окисной пленки. Скорость реакции в инкубационном периоде восстановления низкая. Второй период характеризуется непрерывным возрастанием скорости процесса взаимодействия восстановителя с кислородом окислов вследствие образования и увеличения поверхности раздела исходной и образующейся твердых фаз. В третьем периоде реакционные зоны вокруг отдельных зародыщей сливаются. Поверхность, по которой происходит взаимодействие, уменьшается, что приводит к замедлению скорости восстановления 124].  [c.70]

Механизм, который предложили Кабрера и Мотт (J949 г.), исходит и из существования на металле образовавшейся в процессе хемосорбции кислорода пленки, в которой ионы и электроны движутся независимо друг от друга. При низких температурах диффузия ионов через пленку затруднена, в то время как электроны могут проходить через тонкий еще слой окисла либо благодаря термоионной эмиссии, либо, что более вероятно, вследствие туннельного эффекта (квантово-механического процесса, при котором для электронов с максимальной энергией, меньшей, чем это требуется для преодоления барьера, все же характерна конечная вероятность того, что они преодолеют этот барьер, т. е. пленку), обусловливающего высокую проводимость окисной пленки при низких температурах. При этом на поверхности раздела металл— окисел образуются катионы, и на поверхности раздела окисел— газ—анионы кислорода (или другого окислителя). Таким образом, внутри окисной пленки создается сильное электрическое поле, благодаря которому главным образом ионы и проникают через пленку, скорость роста которой определяется более медленным, т. е. более заторможенным, процессом.  [c.48]

Механическая связь реализуется в отсутствие какого бы то ни было химического механизма — даже сил Ван-дер-Ваальса — и сводится к механическому сцеплению. Однако отсутствие химической связи существенно снижает прочность композита при поперечном нагружении поэтому в технологии изготовления компози тов механическую связь не считают полезной. Связь путем смачивания и растворения имеет место в композитах, где упрочнитель, не являющийся окислом, смачивается или растворяется матрицей, но не образует с ней соединений. Окисная связь может возникать при смачивании, а также при образовании промежуточных соединений на поверхности раздела. Как правило, металлы, окислы которых обладают малой свободной энергией образования, слабо связываются с окисью алюминия. Однако следы кислорода иль активных элементов усиливают эту связь путем образования промежуточных зон в обоих случаях связь относится к окисному типу. Кроме того, согласно общей классификации, к окисному типу относится связь между окисными пленками матрицы и волокна.  [c.35]

Окисная связь. При рассмотрении окисной связи не требуется введения новых принципов, отличающихся от тех, которые были сформулированы ранее. Однако отсутствие подробных исследований механизмов связи побуждает выделить этот тип в отдельную группу. В системе серебро —усы окиси алюминия эта связь, как полагает Саттон [44], является чисто механической. Однако, как показал Мур [26], в присутствии следов кислорода в системе никель — окись алюминия связь превращается в реакционную за счет образования шпинели NiO-AbOs. Другим примером может служить связь между алюминием и бором, на поверхности которых присутствуют окисные пленки. В результате растворения обоих омислов или взаимодействия между ними на поверхности раздела образуется продукт реакции в виде окисной пленки. Последняя и обеспечивает связь в этой системе, относящейся к псевдопервОму классу.  [c.80]


Различие между системами третьего класса (химически взаимодействующими) и системами псевдопервого класса заключается в том, что в первых реакция на поверхности раздела развивается равномерно, а в последних начинается лишь на участках, где разрушена окисная пленка. До тех пор пока пленка не разрушена, композит ведет себя как система первого класса (не взаимодействующая химически и без взаимного растворения компонентов). Места разрушения расположены очень нерегулярно, и реакция развивается неравномерно. Некоторые стадии разрушения окис-ной пленки в системе алюминий—бор представлены на рис. 3 гл. 3. Паттнайк и Лоули [23] и Джонс [13] наблюдали такую же  [c.148]

Видна фаза борида алюминия АШг, появившаяся в результате химического взаимодействия стрелкой указан участок, где AlBj пророс через окисную пленку на исходной поверхности раздела.  [c.149]

Первые попытки изготовить композит алюминий—бор путем пропитки расплавленным металлом были совершенно безуспешными. Кэймехорт [4], обобщив некоторые ранние исследования, привел примеры быстрого разупрочнения волокон бора в присутствии расплавленного алюминия. Волокно интенсивно взаимодействует с расплавом, при этом на нем растут ограниченные кристаллы диборида алюминия. Напротив, в композите, изготовленном путем горячего прессования при температуре ниже 366 К, следов взаимодействия не обнаруживается, хотя продолжительность прессования много больше считанных секунд, необходимых для проникновения расплавленного металла. Эти наблюдения привели Меткалфа к выводу, что окисные пленки сохраняются на поверхности раздела при диффузионной сварке, но разрушаются при пропитке расплавленным металлом [19].  [c.170]

Если увеличение температуры поверхности раздела металл — окись (или средней температуры окисного слоя) приводит к увеличению скорости коррозии, тогда существует потенциал для ускоренной коррозии в условиях теплопередачи по сравнению с условиями без теплопередачи для одинаковой температуры на поверхности раздела окисел — вода. Рассмотрения такого рода предпринимались Вэлдманом и Коэном [21], чтобы изучить это явление аналитически в то время, когда имеющаяся экспериментальная техника не позволяла провести непосредственные измерения. Была принята модель для худшего случая, а именно, что после перелома окисная пленка состоит из тонкого непроницаемого внутреннего слоя при температуре поверхности раздела окисел — металл и толстого наружного слоя, содержащего прожилки, в которых поддерживался рассчитанный температурный градиент. Скорость коррозии после перелома в условиях теплопередачи предполагалось такой же, как и наблюдаемая при изотермических условиях испытаний при рассчитанной температуре поверхности раздела окисел — металл (см. рис. 8.7). Скорость роста слоя окиси, как предположено, равна R (см. рис. 8.6) при температуре Тт. Как следует из рис. 8.6,  [c.240]

При испытаниях в нейтральной среде скорость коррозии низколегированных сталей в начальный период времени уменьшается во времени, однако через 80—100 суток она становится неизменной. Д. Л. Дуглас и Ф. К. Цицес [111, 12] считают, что к этому моменту пленка достигает предельной толщины, становится пористой, и скорость диффузии ионов железа через нее поддерживается на постоянном уровне. Поскольку, по данным тех же авторов, наличие на поверхности металла окисной пленки, образовавшейся в процессе отжига при температуре 800° С, не изменило скорости коррозии железа, измеренной по количеству выделившегося водорода, очевидно, диффузия через окисную пленку не является стадией, полностью определяющей эффективность коррозионного процесса в этом случае. Скорость катодного процесса на образцах с окисной пленкой, полученной при оксидировании и образовавшейся при окислении на воздухе, и на образцах без искусственной пленки, почти что одинакова, а это также свидетельствует о том, что диффузия через окисную пленку не влияет на скорость коррозии. При температуре ниже 200° С эффективность коррозионного процесса железа определяется скоростью реакции, протекающей на поверхности раздела металл — вода. Однако, по мнению этих авторов, скорость диффузии ионов железа через окисную пленку и в этом случае оказывает некоторое (но не определяющее) влияние на скорость коррозионного процесса.  [c.101]

Эти же авторы установили, что пленка, образовавшаяся на цирконии в воде при температуре 328 С, разрушается в процессе катодной поляризации образца, как при температуре испытаний, так и при комнатной. Однако прямой зависимости между повреждением пленки и количеством выделившегося водорода нет. Как указывалось выше, увеличение содержания водорода в цирконии до 50 мг кг на его коррозионной стойкости в воде при высокой температуре не отражается. В паре при температуре 370° С у циркония с концентрацией 10 000 мг кг водорода, увеличение массы за 42 суток в три раза превышало это увеличение при концентрации водорода в цирконии 4 мг1кг. Из имеющихся данных невозможно установить, как диффундирует водород через окисную пленку к металлу — в виде молекулы или в виде иона. Томас [111,234] считает, что меньшее поглощение водорода сплавами циркония с оловом объясняется уменьшением скорости диффузии водорода под влиянием стремления ионов и п" к ассоциации в окисной решетке. Образование же гидридов циркония на поверхности раздела металл — окисел может привести к нарушению сцепления окисного слоя с поверхностью металла и в результате — к более быстрой точечной коррозии, а иногда — к разрыхлению окисла. В последнем случае образование гидрида является причиной перехода от первоначальной (небольшой) скорости коррозии к последующему быстрому разрушению. Другие исследователи полагают, что гидридные включения способствуют защите циркония от коррозии в пределах ограниченной области, а коррозионно стойкий материал защищается равномерно распределенными включениями. При распределении же включений лишь по границам зерен цирконий корродирует интенсивно.  [c.222]

Суммарный заряд системы адгезив — окисная пленка — германий равен нулю. При отрыве адгезива по границе раздела адгезив — окисная пленка на исходной поверхности, представляющей собой германий с окисной пленкой, остается избыточный заряд. Действие этого заряда приводит к изменению поверхностной проводимости, которое можно обозначить через Aq. При отрыве адгезива происходит релаксация величины Ачто соответствует рассосродоточению остаточного заряда на поверхности полупроводника. Существование величины Aq ш ее изменение в процессе отрыва пленок подтверждают наличие двойного слоя в зоне контакта.  [c.121]

Чтобы понять механизм окисления, приходится изучать и по мере возможности предугадывать окислительные характеристики окисных слоев для всевозможных сочетаний металл — газ. Необходимо знать состав и структуру устойчивых соединений, образующихся при таком сочетании. Так как энергетическое состояние на поверхности раздела, равно как и на всякой поверхности вообще, отлично от энергетического состояния в толще материала, на подходящей поверхности могут образовываться металлические соединения, в обычных условиях неустойчивые в толще материала. Так, никель образует только один устойчивый окисел, а именно закись никеля N 6, но на поверхности окиси алюминия АЬОз возможно образование в значительном количестве и полуторной окиси никеля N 203 то же самое относится и к образованию двуокиси никеля N 02 на поверхности ТЮ2 [1]. В таких случаях структура образующихся окислов никеля псев доморфна структуре поверхности, на которой они образуются. Закись никеля N 0, которая, как известно, в нормальных условиях кристаллизуется только в решетке каменной соли, при образовании в виде слоя на поверхности никеля может приобрести ромбоэдрическую структуру [2]. Еще об одном экспериментальном факте, который можно увязать с влиянием поверхностной энергии, сообщает Гульбрансен [3]. Вюстит РеО, обычно неустойчивый при температурах ниже 570° С, образуется при окислении железа при этих температурах в виде тонкой пленки под окалиной, состоящей из окиси железа РегОз. Чем ниже температура образования такой пленки вюстита, тем меньше ее толщина, хотя пленку удавалось обнаруживать даже при 400° С. По уравнению  [c.12]

Коррозионная стойкость таитала связана с наличием на его поверхности тонкой сплошной пленки пятиокиси ТазОб. В целом ряде очень агрессивных сред металл пассивируется и становится почти таким же инертным, как золото или платина. В предложенной Пурбэ [5] таблице термодинамической устойчивости тантал следует за цинком и имеет номер 34 (номер 1 имеет золото). В то же время в таблице практической устойчивости тантал благодаря своей пассивной окисной пленке располагается непосредственно за родием (номер 1) и опережает золото (номер 4). Окисная пленка на тантале обладает хорошей адгезией и, по-вндимому, не является пористой. Согласно некоторым данным, на границе раздела окисел — металл образуется слой окисей, устойчивых до 425 С. При нагреве выше этой температуры устойчива только пятиокись, поэтому внутреннее напряжение (создаваемое металлом), возникающее в окисле в ходе его превращения, приводит к растрескиванию и отслаиванию защитной пленки.  [c.205]



Смотреть страницы где упоминается термин Окисные пленки на поверхности раздела : [c.33]    [c.101]    [c.215]    [c.132]    [c.127]    [c.216]    [c.102]    [c.107]    [c.113]    [c.131]    [c.75]   
Поверхности раздела в металлических композитах Том 1 (1978) -- [ c.170 ]



ПОИСК



Пленки окисные

Поверхность раздела



© 2025 Mash-xxl.info Реклама на сайте