Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Планера полет

Параметры паразитные 282, 733 Период условный 50 Планера полет 497 Плоскость фазовая 38 Поверхность фазовая многолистная 215, 582, 594, 604  [c.914]

Модель планера Полет . Эта модель имеет современную форму (рис. 6). Для ее изготовления необходимы бумага, деревянные рейки и клей ПВА. Основные части модели Полет  [c.29]

Рис. 6. Модель планера Полет Рис. 6. Модель планера Полет

Задача 825. Принимая силу сопротивления воздуха в свободном полете планера равной F = kv, где k—коэффициент пропорциональности, V—скорость планера, определить расстояние, которое пролетит планер за t сек от момента, когда его скорость была равна v . Считать, что движение планера происходит по горизонтальной прямой. Масса планера равна т.  [c.307]

Пример 2. Задача Жуковского о полёте планера [1]. Рассмотрим полет планера в вертикальной плоскости xz (ось Oz направлена вверх) при следующих предположениях  [c.61]

Единственное состояние равновесия системы (3.19) находится в точке 0 = О, г/ = 1 и соответствует режиму горизонтального полета планера с постоянной скоростью. Фазовые траектории определяются соотношением  [c.62]

Таким образом, движение изображающей точки по замкнутым фазовым траекториям, охватывающим состояние равновесия на фазовом цилиндре, соответствует полету планера по волнообразным линиям, а при движении по  [c.63]

Состояние равновесия системы (3.21) соответствует полету планера по нисходящей прямой с постоянной скоростью  [c.64]

Итак, в случае а О все фазовые траектории асимптотически приближаются к устойчивому состоянию равновесия, а фазовый портрет системы имеет вид, показанный на рис. 3.17. Таким образом, при наличии сил сопротивления воздуха планер при любых начальных условиях приходит к единственному устойчивому равновесному режиму. Если начальная скорость планера достаточно велика, то планер совершит сначала одну или несколько мертвых нетель, затем ио волнообразно затухающей траектории будет приближаться к траектории прямолинейного полета. Одна из возможных траекторий полета планера показана на рис. 3.18.  [c.66]

Применительно к силовым установкам ВС (газотурбинные двигатели) расчетные методы по принципу обеспечения безопасного ресурса более упрощены, поскольку относятся к элементам конструкции, в меньшей мере подверженным сл) ай-ному изменению нагрузок за полет ВС. Вместе с тем эти расчеты учитывают нагрев материала и этим принципиально отличаются от расчетов элементов конструкции планера ВС.  [c.38]

Существенное влияние на величину (Ьг)к при переходе к быстрому распространению трещины оказывают агрессивная среда и температура. Их влияние на элемент конструкции проявляется наиболее явно в случае большой продолжительности цикла, когда трещина раскрыта и материал находится под напряжением. Наиболее типична указанная ситуация для планера ВС и вращающихся деталей двигателя, которые подвержены циклическому нагружению с высокой асимметрией или длительному растяжению в полете от центробежной нагрузки. Причем для горячей части двигателя характерен нагрев до температуры 750°.  [c.103]


Воздушные суда гражданской авиации в процессе каждого полета испытывают не только изменяющиеся по частотному составу нагрузки. Длительное статическое нагружение элементов конструкции ВС с неизменным по уровню воздействием происходит на этапе крейсерского полета. Применительно к алюминиевым сплавам, которые воплощены в конструкции планера и крыльях ВС, длительная выдержка под нагрузкой имеет место в течение длительных этапов полета в спокойной атмосфере.  [c.354]

Наиболее простые ситуации моделирования роста трещины без учета эффекта взаимодействия нагрузок, рассмотренные выше, являются частными случаями эксплуатационного нагружения некоторых элементов конструкции, для которых переходы от одних уровней нагружения к другим определяются, как правило, условиями функционирования. В то же время конструктивные элементы планера ВС подвергаются случайному эксплуатационному нагружению, сопровождающемуся резким изменением нагрузок, например, на посадке и при воздействии атмосферной турбулентности (известно, что в полете возможно появление порывов воздуха, способных создавать перегрузки в 2 раза и более).  [c.425]

Задумываясь над этим фактором, невольно начинаешь мечтать о его практическом использовании, о возможности полета на большой высоте с невиданной скоростью. Ведь стоит поднять такой экипаж на высоту хотя бы 100 км, сообщить ему горизонтальную скорость в несколько тысяч километров в час, и он, словно планер, совершит дальний полет по плавной кривой, постепенно опускаясь к земле...  [c.135]

Первым, кто понял, что, прежде чем браться за строительство самолета с мотором, необходимо понять природу полета с неподвижным крылом, т. е. научиться летать , был немецкий исследователь О. Лилиенталь. Начав свои исследования с 1871 г., он как бы вновь пришел к исходной точке предыстории авиации, поставив перед собой вопрос как летают птицы При этом, в отличие от своих предшественников, Лилиенталь уделил максимальное внимание не машущему полету, а парению птиц и в конечном счете пришел к выводу о возможности человека совершать управляемые парящие полеты без мотора. Закончив в 1889 г. свои теоретические исследования, Лилиенталь приступил к практическому изготовлению и испытанию планеров различного типа сначала монопланов с поверхностью крыльев до 10—15 м , потом бипланов — до 25 [5, с. 72—75]. За 5 лет, с 1891 до 1896 г. он осуществил более 2500 полетов, добившись  [c.271]

Это обеспечивает высокую эксплуатационную надежность элементов конструкции планера, а следовательно, безопасность полетов.  [c.106]

Наработка — продолжительность или объем работы изделия, измеряемая в часах налета, числом посадок, числом выстрелов, числом циклов, срабатываний и т. д., т. е. расход ресурса. Для планеров самолета в наработку засчитывается только их работа в полете, а для вертолетов — вся работа в полете (100%) плюс одна пятая часть (20%) работы несущей системы на земле.  [c.112]

Исправное состояние — это такое состояние самолета (вертолета), когда все его технические и летные характеристики соответствуют установленным нормам, остаток назначенного (межремонтного) ресурса обеспечивает выполнение полета на полную дальность н продолжительность, на котором устранены все отказы и неисправности, выполнены положенные работы согласно регламенту технического обслуживания и проведена послеполетная подготовка. Таким образом, исправное состояние — это такое состояние самолета, когда все характеристики планера и бортовых систем соответствуют техническим условиям не только в момент их контроля, но и в течение всего периода полета.  [c.114]

В Московской группе по изучению реактивного движения работал С. П. Королев (1906—1966), который впоследствии прославился как выдающийся конструктор и ученый в области ракетной и космической техники. В 1930 г. С. П. Королев окончил факультет аэромеханики Высшего технического училища и школу летчиков. Еще студентом он стал автором нескольких оригинальных конструкций. В 1929 г. Королев на Всесоюзных планерных состязаниях выступает в качестве одного из конструкторов планера Коктебель . В 1930 г. он спроектировал и построил планер Красная звезда , на котором впервые в истории авиации выполнялись фигуры высшего пилотажа. В том же 1930 г. он построил легкомоторный самолет СК-4 и сам совершил свой первый полет. В 1935 г. Королев принимал участие во Всесоюзном слете планеристов в качестве летчика и конструктора двухместного пла-  [c.297]

Пристального внимания требуют вопросы размещения воздухозаборника на летательном аппарате. Это объясняется тем, что воздухозаборник интерферирует с планером летательного аппарата и оказывает влияние на его аэродинамическое качество и подъемную силу, которые при правильной компоновке (для воздухозаборников некоторых схем) могут даже увеличиваться на определенных режимах полета. Наоборот, неудачная компоновка воздухозаборника может привести к ухудшению аэродинамических характеристик летательного аппарата. С другой стороны, воздушный поток, возмущенный элементами летательного аппарата, может иметь значительную неравномерность перед входом в воздухозаборник, особенно при эволюциях. В этом случае выбор места расположения воздухозаборника должен обеспечивать его эффективную работу в широком диапазоне углов атаки и скольжения, значительно изменяющихся в условиях полета. Образующиеся при обтекании поверхностей летательного аппарата пограничные слои и вихревые структуры не должны попадать внутрь воздухозаборника и оказывать отрицательное влияние на его внутренний процесс.  [c.254]


Окончательный выбор программы регулирования производится после конкретизации принятой системы регулирования и с использованием опытных характеристик конкретного регулируемого воздухозаборника. При этом, естественно, учитываются схема регулирования, управление пограничным слоем, интерференция с планером летательного аппарата и другие факторы. Наличие полей таких характеристик (см. рис. 9. 33) и выбранной программы регулирования воздухозаборника позволяет затем построить скоростные характеристики воздухозаборника, под которыми принято понимать зависимости авх и от числа М полета. Наличие таких характеристик необходимо для расчета высотно-скоростных характеристик двигателя.  [c.304]

Требования обеспечения ресурса планера начали учитываться при проектировании в 50-е годы после известных катастроф английских самолетов Комета-1 . В связи с необходимостью существенного увеличения ресурса самолетов, уменьшения затрат на их эксплуатацию и повышения безопасности полетов, авиационные фирмы и конструкторские бюро осуществили важные программы обеспечения ресурса самолетов при их проектировании.  [c.408]

D = [/2)pV f. Величина / не зависит от скорости полета, если не учитывать влияние сжимаемости или вязкости. Площадь вредной пластинки может быть определена по коэффициентам лобового сопротивления различных элементов планера вертолета  [c.313]

В настоящее время эта проблема является первоочередной для двух групп объектов. К первой группе относятся самолеты гражданской авиации. Авиацию отличают высокий научно-технический уровень разработок, жесткие требования к весовым показателям, которые приводят к напряженности как конструкции планеров, так и деталей двигателей, а также высокие требования к безопасности полетов при наличии воздействий, не поддающихся прямому контролю. В авиации впервые была поставлена проблема индивидуального прогнозирования ресурса. Именно здесь впервые были применены датчики для регистрации нагрузок, действующих на самолет в процессе эксплуатации, а также датчики ресурса, позволяющие судить о накопленных в конструкции повреждениях, а следовательно, об остаточном ресурсе.  [c.10]

Что касается до ракетных реактивных двигателей, то они получили применение, главным образом, в реактивном вооружении и мы их рассматривать не будем. Отмечу, что было много попыток использовать ракетный двигатель для авиации. Самолеты с ракетным двигателем летали во время Отечественной войны. Насколько мне известно, первый планер, снабженный ракетным двигателем, был выполнен русским инженером Королёвым и летал у нас еп е до войны. Чрезвычайно короткий срок полета таких машин из-за большего расхода горючего (1 кг/сек. на 180 200 кг тяги) послужил причиной малого их развития.  [c.16]

В расчетах на прочность и долговечность ВС принято считать, что основным конструктивным узлом планера, определяющим его ресурс (долговечность или период эксплуатации), является крыло [1, 2, 7, 8]. Проведение расчетов на ресурс применительно к регулярным зонам кг)нструкции крыла до звукового транспортного ВС в полете основано на рассмотрении преимущественно одноосного напряженного состояния материала. Вторая компонента нагрузок, присутствующая в наиболее нафуженных зонах, считается незначимой, и ею в расчетах на прочность и ресурс пренебрегают. После расчетов ее учитывают через запасы прочности. Использование метода конечных элементов принципиально меняет эту ситуацию. Напряженное состояние характеризуется в полном объеме с учетом всех компонент тензора напряжений (1.1).  [c.30]

Практическое развитие идеи повышения высотности силовых установок самолетов позволило достигнуть больших скоростей полета на возрастающих высотах при неизменном максимальном скоростном напоре. Но возникающий при этом интенсивный нагрев передних кромок крыла и воздухозаборных устройств от трения пограничного слоя, окутывающего обтекаемую воздухом поверхность самолета, а также нагрев элементов конструкции от горячих частей турбореактивного двигателя (особенно — от форсажной камеры) заставили искать способы тепловой защиты летчика и специального оборудования и вести поисковые разработки теплостойких конструкций планеров самолетов, двигателей и бортовых систем. Уже на самолете МиГ-19 были применены высокопроизводительные турбохододиль-ные агрегаты для кондиционирования воздуха в кабине летчика. В дальнейшем мощные турбохолоди.льные агрегаты стали использоваться для охлаждения нетеплостойкого оборудования в приборных отсеках. Кроме того,, при изготовлении конструкций планера начали применяться специальные высокопрочные и жаропрочные сплавы вместо традиционных дюралевых сплавов.  [c.386]

В 1969 г. Лабораторией динамики полета ВВС США была начата разработка деталей главного шасси из композиционных материалов. Эти детали характеризуются сложной конфигурацией и многими конструктивными особенностями, отличающими их от элементов конструкции планера. Кроме того, шасси должно выдерживать высокие динамические нагрузки, возникающие в результате удара при посадке. Внешний обод бокового подкоса (рис. 27), образующий фланец, изготовлен непрерывной намоткой, обеспечивающей укладку слоев по схеме (0,/ 15/02)т- В работающей на сдвиг стенке материал имеет ориентацию слоев (Ог/гЫЗз) . Слоистый пластик на основе рубленых волокон использован для бобышек и узлов наружной подвески. Отверждение детали в сборе производится совместно с алюминиевыми втулками. Углепластиковый двухзвенник (рис. 28) также изготовлен из композиции на основе непрерывных и рубленых волокон и эпоксидной матрицы.  [c.167]

Таким образом, все параметры цикла двигателя, за исключением степени двухконтурности, выбраны по термогазодинамическим соображениям с учетом конструктивных и технологических ограничений. Степень двухконтурности двигателя назначалась из условия обеспечения некоторого избытка тяги на основных пяти режимах полета и была принята равной приблизительно единице. При этом учитывалось, что двигатель, имеющий более низкую степень двухконтурности, мог бы хорошо работать на дроссельном режиме при полете на малой высоте, но с высоким расходом топлива, что сократило бы радиус действия самолета. Двигатель с большой степенью двухконтурности имеет больший диаметр, в результате чего фюзеляж планера и воздухозаборник получаются громоздкими, что ведет к увеличению лобового сопротивления и к уменьшению радиуса действия самолета.  [c.88]


Для сверхзвукового пассажирского самолета чрезвычайно важен низкий удельный расход топлива на крейсерском сверхзвуковом режиме полета. Например, при использовании СПС Конкорд на трансатлантической трассе увеличение на 1% удельного расхода топлива двигателя приводит к снижению полезной нагрузки на 5%. В связи с этим при создании ТРДФ Олимп особое внимание было обращено на достижение при доводке очень высоких КПД элементов двигателя, принятых в проекте, а также полное согласование характеристик планера и двигателя. Кроме  [c.136]

В настоящее время начаты исследования, цель которых - научиться учитывать неопределенности и человеческие ошибки при расчете и проектировании. До сих пор эти факторы неявно учитывались лишь при выборе расчетных коэффициентов, основанном на многолетней практике проектирования, возведения и эксплуатации. Там же, где нормы явно имели вероятностный характер, эти факторы вводились путем завышения нормативных показателей безопасности. Так, известно, что примерно 90% крупньгх происшествий в авиации происходят по вине летчиков или пе1 сонала и что только 10% можно отнести на счет недостаточной надежности конструкции планера и (или) двигателей. Поэтому при общих требованиях к безопасности полетов, измеряемых показателем риска 10 на один стандартный полет, назначают показатель риска для конструкции, равный 10 , т,е. повышают надежность на порядок выше. Аналогичная практика принята в сущности в ядер-ной энергетике.  [c.64]

Требования к длительности роста трещин сформулированы на основе анализа регламентов технического обслуживания планера современных самолетов. Начальные производственные дефекты определены по данным экстраполяции кривых длительности роста трещин до первого полета (цикла нахружения) в различных типах конструкций. Для установления надежно обнаруживаемых размеров трещин применены результаты исследований по надежности контроля трещин различными методами дефектоскопического контроля, а также метод экспертных оценок, которые базируются на практическом опыте.  [c.420]

Кроме внимательного изучения полета птнц, первые исследователи в области аэродинамики главным образом занимались определением особенно удобных форм крыла. Подобные исследования проводились как в аэродинамических трубах, так и с помощью реальных полетов на планере. На рнс. 11 показан ряд профилей крыла, исследованных в аэродинамической трубе Филлипса [12]. Отметим, что Филлипс исследовал кривые поверхности, у которых оказалось больше преимуществ, чем у плоских пластин. Эти наблюдения полностью подтвердил своими экспериментами полетов на планерах Отто Лилиенталь (1848-1896) [13]. Исследователям того периода представлялись важными два вывода во-первых, что кривая поверхность показывает положительную подъемную силу в случае нулевого угла атаки, т. е. если передняя и задняя кромки расположены на одинаковой высоте во-вто-  [c.30]


Смотреть страницы где упоминается термин Планера полет : [c.85]    [c.146]    [c.148]    [c.61]    [c.62]    [c.64]    [c.38]    [c.72]    [c.270]    [c.272]    [c.272]    [c.273]    [c.274]    [c.272]    [c.229]    [c.12]    [c.342]    [c.398]   
Теория колебаний (0) -- [ c.497 ]



ПОИСК



Буксирный полет на планере Особенности буксирного полета и подготовка к нему

Запуск модели планера в рекордный полет

Парящий полет на планере в потоках обтекания Что такое парящий полет

Полет на планере Запуск и взлет планера

Полет на планере в терминах Термит и особенности полета в них



© 2025 Mash-xxl.info Реклама на сайте