Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волны заряда

Рассмотрим излучение электромагнитных волн зарядом, движущимся во внешнем электромагнитном поле. В основу рассмотрения положим уравнение Дирака-Лоренца (1938) для точечного электрона, записанное с учетом сил радиационного торможения  [c.92]

Электромагнитное поле в замкнутой полости может быть интерпретировано как совокупность стоячих волн. Каждую волну можно заменить эквивалентным осциллятором, тогда энергия поля составит сумму энергий всех осцилляторов. Так как движение происходит в полости, то возникающее в результате этого излучение должно иметь температуру, равную температуре излучающих стенок. Поэтому каждый осциллятор, заменяющий стоячую волну, должен обладать энергией, зависящей не только от частоты, но и от температуры. Следует заметить, что при движении зарядов энергия зависит от времени, но нас будет интересовать не мгновенная энергия, а энергия на собственной частоте системы.  [c.59]


В диэлектрических материалах электромагнитные колебания распространяются с фазовой скоростью, зависящей от диэлектрической проницаемости, и, естественно, со скоростью, меньшей чем в вакууме. Распространение электромагнитной энергии в среде сопровождается взаимодействием с атомами вещества. Точнее, происходит определенное воздействие электромагнитной волны на электрические заряды атома, что приводит к изменению либо скорости распространения, либо интенсивности потока.  [c.117]

Следовательно, световые волны излучаются при ускоренном движении электрических зарядов.  [c.32]

Основной формой существования материи является движение. Материя может переходить из одной формы в другую. В механике рассматриваются только такие формы материи, которые можно назвать вещественными, в отличие от таких материальных объектов, ка - , например, электрический заряд, электромагнитная волна и другие.  [c.5]

Условие возникновения электромагнитных волн. Изменения магнитного поля происходят при изменении силы тока в проводнике, а сила тока в проводнике изменяется при изменении скорости движения электрических зарядов в нем, т. е. при движении зарядов с ускорением. Следовательно, электромагнитные волны должны возникать при ускоренном движении электрических зарядов.  [c.248]

Открытие электромагнитных волн. Электромагнитные волны были впервые экспериментально обнаружены немецким физиком Генрихом Герцем (1857—1894) в 1887 г. В его опытах ускоренное движение электрических зарядов возбуждалось в двух металлических стержнях с шарами на концах. При сообщении шарам достаточно больших разноименных зарядов между ними происходил электрический разряд. В результате шары перезаряжались, между ними вновь проскакивала искра и т. д.— процесс повторялся многократно, т. е. возникали электрические колебания.  [c.248]

Общим для всех электромагнитных излучений являются механизмы их возникновения электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или прп переходах молекул, атомов или атомных ядер из одного квантового состояния Б другое. Гармонические колебания электрических за-  [c.278]

Из выражения (1.34) следует, что каждый движущийся с ускорением заряд излучает электромагнитную волну", а напряженность поля излучения спадает обратно пропорционально первой степени расстояния от источника. На большом расстоянии от источника (в волновой зоне) поле излучения можно рассматривать как плоскую волну, что позволяет сразу найти и магнитное поле излучаемой электромагнитной волны, у которой Е (О = = Н ff)l, а направление Е и Н определяется правилом правого винта. В сферических координатах (см. рис. 1.20) векторы Е и Н определяют следующими выражениями  [c.58]


Формулы (1.35) для электромагнитной волны, излучаемой точечным зарядом, могут быть записаны в векторном виде, полностью соответствующем выражениям (1.30).  [c.58]

Таким образом, если ранее Е и Н рассматривали как равноправные компоненты электромагнитной волны, то при исследовании воздействия электромагнитной волны на вещество можно установить различие между ними. Это, впрочем, понятно, так как физический процесс подобного рода сводится к воздействию поля на элементарные заряды (в первую очередь свободные и связанные электроны). Такое воздействие количественно описывается формулой Лоренца f = сЕ +(e/ j[vH]. Обычно v с и второе слагаемое в формуле мало. Поэтому вектор Е и отвечает за движение электрических зарядов под действием электромагнитного поля. Тем самым подводится база под довольно неопределенное понятие светового вектора , которым часто пользуются при описании оптических явлений. Можно считать вектор Е таким световым вектором , ясно отдавая себе отчет в том, что в старой волновой теории смысл этого понятия был совсем иным.  [c.79]

Нетрудно заметить, что эффект светового давления должен наблюдаться при отражении электромагнитных волн от любого вещества или их поглощении в облучаемом образце. Действительно, при всех изменениях светового потока должна возникать дополнительная сила, которую можно интерпретировать как давление света. Если исходить из наличия в веществе заряженных частиц (электронов), то мы вправе предположить, что при взаимодействии электромагнитной волны с веществом, приводящем к отражению или поглощению части светового потока, электрическая компонента электромагнитного поля будет раскачивать электрон с силой qE, сообщая ему скорость v. Другая составляющая электромагнитного поля (И) будет воздействовать на движущийся заряд с силой Лоренца Af q [vH]/ . Усреднение за период колебаний приводит к тому, что эффективное действие на движущийся заряд оказывает только эта составляющая силы Лоренца, которая много меньше (и << с) раскачивающей электрон силы  [c.108]

Преобразуем выражение для силы, действующей на электрон, введя единичный вектор нормали к фронту электромагнитной волны п, который в изотропной среде совпадает по направлению с вектором плотности потока электромагнитной энергии S. Очевидно, что Н = [пЕ], и так как скорость заряда v коллинеарна Е, то (v п) = О. Тогда  [c.108]

Важно отметить, что в выражении (2. 32) для силы, действующей на электрон, не фигурирует величина его заряда q. Это облегчает решение задачи о действии электромагнитной волны на площадку о, полностью поглощающую падающее на нее излучение.  [c.109]

Уточним постановку задачи пусть в единице объема имеется N хаотически расположенных эквивалентных атомов исследуемого вещества. Будем считать, что в каждом атоме имеется один оптический электрон с зарядом q. Электрическое поле световой волны воздействует на такой электрон с силой дЕ (вынуждающая сила).  [c.139]

Пусть на такую молекулу, диаметр витка которой равен а, падает линейно поляризованная волна Е == Ех (рис.4, 14). Она вызовет движение зарядов, направленное вдоль оси X. Но если заряды будут двигаться вдоль спирали, то неизбежно возникнет их движение и вдоль оси У. Следовательно, можно говорить об У-компоненте волны в веществе, наличие которой должно привести к отклонению плоскости колебаний от направления Е Е -Расчет неизбежно должен быть связан с изменением фазы волны в пределах одной молекулы (вместо mt нужно взять at — ka), а его результат покажет, будет ли такое изменение существенно. На первый взгляд этот эффект кажется пренебрежимо малым, так как для оптической области отношение размера молекулы к длине волны порядка 10 , но возможность выявления в эксперимен-  [c.158]

Разобранные в настоящей главе случаи интерференции света дают возможность наблюдать это явление на специально осуществляемых опытах. Однако явление встречи двух или нескольких когерентных волн, между которыми наблюдается интерференция, имеет место, по существу, во всяком оптическом процессе. Распространение света через любое вещество, преломление света на границе двух сред, его отражение и т. д. суть процессы такого рода. Распространение света в веществе сопровождается воздействием световой электромагнитной волны на электроны (и ионы), из которых построено вещество. Под действием световой волны эти заряженные частицы приходят в колебание и начинают излучать вторичные электромагнитные волны с тем же периодом, что и у падающей волны. Так как движение соседних зарядов обусловливается действием одной и той же световой волны, то вторичные волны определенным образом связаны между собой по фазе, т. е. являются когерентными. Они интерферируют между собой, и эта интерференция позволяет объяснить явления отражения, преломления, дисперсии, рассеяния света и т. д. Мы познакомимся в дальнейшем с объяснением перечисленных явлений с указанной точки зрения. В настоящем же параграфе мы остановимся на одном частном случае из описанного ряда явлений.  [c.89]


Можно детально рассмотреть воздействие световой волны на электрические заряды атомов среды (электроны, ионы) электромагнитные волны возбуждают колебания зарядов, происходящие с частотой колебаний электрического вектора вследствие этих колебаний атомы среды излучают вторичные электромагнитные волны, интерференция всех вторичных волн с волной, падающей на среду, приводит к возникновению отраженной и преломленной волн.  [c.470]

Согласно (135.3), частоты всех трех волн должны быть равны между собой. В рамках молекулярных представлений, изложенных в начале параграфа, этот результат очевиден, так как частоты колебаний зарядов, вынуждаемых электрическим вектором световой волны, совпадают с частотой вынуждающей силы, т. е. со,. В дальнейшем индексы при со,, со,-, со будут опущены и частота будет обозначаться просто через со.  [c.472]

Представим себе теперь, что свет падает под углом Брюстера, т. е. ф + ф = /зя. При этом, очевидно, ОБ ОС. Следовательно, ОБ II а. Известно, однако, что колеблющийся электрический заряд не излучает электромагнитных волн вдоль направления своего движения. Поэтому излучатель типа а вдоль ОБ не излучает. Таким образом, по направлению ОБ идет свет, посылаемый излучателями типа р, направление колебаний которых перпендикулярно к ОБ, т. е. перпендикулярно к плоскости чертежа. Другими словами,  [c.481]

Оптически анизотропия среды характеризуется различной по разным направлениям способностью среды реагировать на действие падающего света. Реакция эта состоит в смещении электрических зарядов под действием поля световой волны. Для оптически анизотропных сред величина смещения в поле данной напряженности зависит от направления, т. е. диэлектрическая проницаемость, а следовательно, и показатель преломления среды различны для разных направлений электрического вектора световой волны. Другими словами, показатель преломления, а следовательно, и скорость света зависят от направления распространения световой волны и плоскости ее поляризации. Поэтому для анизотропной среды волновая поверхность, т. е. поверхность, до которой распространяется за время t световое возбуждение, исходящее из точки L, отлична от сферической, характерной для изотропной среды, где скорость распространения V не зависит от направления.  [c.497]

Итак, для вывода зависимости показателя преломления от длины волны найдем, как зависит диэлектрическая проницаемость от частоты переменного электрического поля, и затем перейдем к показателю преломления п на основании соотношения п = ф е. В соответствии с теорией электронов будем рассматривать молекулы или атомы диэлектрика как системы, в состав которых входят электроны, находящиеся внутри молекул в положении равновесия. Под влиянием внешнего поля эти заряды смещаются из положения равновесия на расстояние г, превращая таким образом атом в электрическую систему с моментом величиной р = ге, направленным вдоль поля (диполь). Если в единице объема нашей среды находится N атомов, которые испытывают поляризацию, то электрический момент единицы объема, или поляризация среды, будет равняться Р = Np = Net. При этом мы для простоты полагали, что в среде имеется лишь один сорт атомов и в каждом из них способен смещаться только один электрон. В противном случае поляризация среды записывалась бы в виде  [c.549]

Вынуждающая сила. Вынужденные колебания электрона возникают под действием световой волны, распространяющейся в среде. Магнитная составляющая этого поля оказывает лишь малое действие, ибо магнитное поле действует только на движущийся заряд (см. упражнение 211). Поэтому во всех практических задачах можно ограничиться учетом действия лишь электрического поля волны ). Мы принимаем, таким образом, что действие световой волны определяется напряженностью электрического поля, т. е. на электрон действует сила еЕ, где Е Eq os oi — поле волны. Это справедливо только тогда, когда можно пренебречь действием окружающих молекул, также поляризованных приходящей световой волной. Такое допущение справедливо для разреженных газов, где расстояние между молекулами среды велико. Для газов, находящихся под значительным давлением, для жидкостей или твердых тел необходимо учитывать это влияние, что поведет к изменению выражения для силы, действующей на электрон (см. ниже).  [c.552]

Действительно, опыт подтвердил, что при испускании рентгеновских волн наблюдается максимальная частота (коротковолновая граница), определяемая из написанного условия, где У — ускоряющая разность потенциалов, е — заряд электрона, V — частота границы и /г — постоянная Планка. Волны более короткие (большие V) никогда не наблюдаются, волны же более длинные соответствуют превращению лишь части кинетической энергии электрона в излучение. Определение коротковолновой границы рентгеновского спектра может быть выполнено весьма надежно. Поэтому такого рода опыты используются как один из наиболее совершенных методов определения значения постоянной Планка с помощью соотношения hv — еУ. Наилучшие измерения, выполненные этим методом, дали /г = 6,624-10 Дж-с.  [c.641]

Перед опытом датчик заряжается от источника постоянного напряжения через сопротивление, которое столь велико, что влияние процесса подзарядки конденсатора в течение времени регистрации несущественно. При сжатии датчика в ударной волне заряд конденсатора сохраняется практически постоянным (проводимостью пленки можно пренебречь), а изменение емкости датчика, вызванное сжатием диэлетрика, приводит к изменению разности потенциалов на электродах датчика, регистрируемой прибором с высокоомным входом. В зависимости от конкретных условий регистрации диэлектрический датчик можно соединить непосредственно с пластинами вертикального отклонения электронно-лучевой трубки осциллографа коротким отрезком кабеля, либо через катодный или эмитгерный повторитель или усилитель с высокоомным входом.  [c.307]


Так как взаимодействие волны с зарядом Q приводит в среднем к передаче энергии волны заряду, то среднее за период значение мощности Р положительно. Поэтому направление действующей на заряд средней силы, как видно из (3.30), совпадает с п, т. е. с направлением волны. Таким образом, при усреднении по времени полной силы, действующей на заряд со стороны электромагнитного поля световой волны, вклад силы СЕ обращается в нуль, а сила Лоренца СуХВ приводит к световому давлению.  [c.168]

Сначала (например, в течение первых нескольких колебаний) величина скорости V мала. Поэтол1у движение заряда в основном определяется вектором Е. Таким образом, v направлено по Е и изменяет направление вместе с изменением направления Е. Но всякий раз при изменении направления Е меняет направление В. Поэгому вектор vXB всегда имеет один и тот же знак. Сила, действующая на заряд благодаря В, всегда совпадает с направлением распространения, определяемым вектором ЕХВ. Таким образом, заряд совершает движение, являющееся суперпозицией поперечных котебл-ний с частотой поля, плюс движение с медленно возрастающей скоростью вдоль направления распространения поля. Покажем теперь, что средняя по времени скорость, с которой заряд приобретает импульс вдоль г, равна произведению 1/с на среднюю по времени скорость, с которой заряд поглощает энергию из бегущей волны. (Заряд не удерживает поглощенную им энергию. Если заряд связан с веществом, то он постоянно преобразует полученную энергию в тепло благодаря наличию сил сопротивления, действующих на заряд при его движении. Если заряд находится в свободном пространстве, то энергия, поглощенная им, испускается во всех направлениях. Величина энергии, излученной в направлении падения бегущей волны, пренебрежимо мала, так что обратно в бегущую волну возвращается ничтожная часть поглощенной энергии.)  [c.325]

Существование поверхностных плазмонов было впервые предсказано Ритчи [30]. В рамках диэлектрической теории потерь он показал, что для тонкой пленки газа свободных электронов наряду с плазмонной линией потерь на частоте юр существует также линия, соответствующая частоте а>р1У2. Это изменение энергии плазмо-нов возникает из-за эффектов деполяризации, связанных с некоторыми плазмонными модами. Простая физическая интерпретация новой линии была дана в работе [31]. Именно эта линия обусловлена поверхностными волнами заряда, распространяющимися вдоль поверхности раздела между плазмой и вакуумом. Дисперсионное уравнение для поверхностных плазмонов в случае плазмы с диэлектрической проницаемостью гл, граничащей с диэлектрической средой, проницаемость которой есть ев, имеет вид  [c.243]

Группа из трех скважин, называемая также камуфлетом ( amouflet) (рис.4.А.2), где сначала подрывается центральная скважина, для регистрации Р-волн. Заряд и глубина этой скважины подбираются таким образом, чтобы создать экран из сыпучего материала между боковыми зарядами. Оставшиеся скважины регистрируются последовательно, после чего выполняется вычитание записей для подавления энергии Р-волн.  [c.31]

Взрывом штампуют обычно в бассейне, наполненном водой (рис. 3.47, а). Заготовку, зажатую между матрицей и прижимом, опускают в бассейн. Полость матрицы под заготовкой вакуумируется, чтобы воздух не препятствовал плотному ее прилеганию к матрице. Заряд с детонатором подвешивают в воде над заготовкой. Взрыв образует ударную волну высокого давления, которая, достигая заготовки, вызывает ее разгон. Процесс штамповки длится тысячные долп секунды, а скорости перемещения заготовки соизмеримы со скоростями распространения пластических деформаций в металле.  [c.114]

При решении динамической упругопластической задачи возникает вопрос о пространственно-временной аппроксимации процесса взрывной запрессовки трубки в коллектор. На рис. 6.3 представлена схема расчетного узла ячейки коллектора для расчета собственных напряжений и деформаций. Здесь Явн — внутренний радиус трубки б — толщина трубки, S — толщина стенки коллектора а — ширина перемычки между отверстиями. Выбор величины радиуса Ян проводится посредством численных расчетов из условия инвариантности НДС от Rh при неизменных характере и уровне импульсной нагрузки при взрыве. Расчет НДС проводится в осесимметричной постановке и отражает ряд существенных особенностей процесса запрессовки трубки в коллектор. К ним относятся возможность учета сложного характера распределения во времени и пространстве давления на внутренней поверхности трубки, обусловленного неодновременной детонацией цилиндрического заряда. Кроме того, с помощью специальных КЭ достаточно хорошо моделируется условие контакта трубки с коллектором в процессе прохождения прямых и отраженных волн напряжений при динамическом нагружении. Учет указанных особенностей позволяет рассчитывать неоднородное поле напряжений и деформаций по высоте трубки (толщине коллектора) и, следовательно, достаточно надежно при учете общ.их, остаточных и эксплуатационных напряжений проанализировать НДС в зоне недовальцовки, в которой инициировались имеющиеся разрушения в коллекторе.  [c.334]

S = 170 мм, вн = 6,5 мм, Rh = 45 мм, S = 1,5 мм. Нагрузка Pefj x,z) (давление продуктов детонации на внутреннюю поверхность трубки) задавалась по формуле (6.5) с коэффициентом демпфирования Сд = 0,2. Расчет нагрузки проводили при длине заряда /=155 мм, скорости детонации Уд=7000 м/с и плотности заряда ро = 1,0 г/см . При этих значениях параметров максимальное значение давления на фронте волны = = 2,5 ГПа. С целью предотвращения среза трубок при взрывной развальцовке длина заряда I делается меньше толщины стенки коллектора. Такая технология приводит к возникновению так называемой области недовальцовки, где трубка не контактирует с коллектором.  [c.347]

В.Д. Нацик [16] предположи г, что существует аналогия между изучением звуковых волн и движущимися дислокациями при переходе границы двух сред с разными модулями упругости и процессом излучения электромагнитных волн движущимися зарядами при переходе границы двух сред, различающихся ди-элек1рическими постоянными. Это позволило предсказагь возникновение звуковых сигналов при переходе дислокации через плоскость разрыва модулей упругости (например, при переходе дислокаций через границу зерна в поли-кристаллическом металле или при выходе дислокации на поверхность) и зависимость интенсивности звукового импульса переходного излучения от скорости, с которой дислокация выходит на поверхность.  [c.258]

После открытия электрона стала очевидной связь явлений излучения и поглощения света с наличием в них электронос. Действительно, свег — это aj.eKTpo-магнитные волны. Излучение олектромагнитных волн происходит при ускоренном движении электрических зарядов. Можно предположить, что np i соуда 5е-  [c.308]

Как известно, любое ускоренное движение электрических зарядов сопровождается излучением электромагнитных волн. Движение по окружности является ускоренным движением, поэтому электрон в атоме должен излучать электромагнитные волны с частотой, равной частоте его обращения вокруг ядра. Это должно приводить к уменьшению энергии электрона, постепенному его приближению к атомному ядру и, наконец, падению на ядро. Таким образом, атом, состоящий из атомного ядра и обращающихся вокруг него электронов, согласно законам классической физики неустойчив. Он может существовать лишь короткое время, за которое электроны израсходуют всю свою эиоргию па излучение и упадут 1 . дро. Но в действитвль-UO TIi атомы устойчивы.  [c.310]

Экспериментальное открытие электрона, радиоактивности, термоэлектронной эмиссии (испускание нагретыми металлами электронов), фотоэффекта (вырывание электронов из металлов под действием света) и других явлений — все это указывало на то, что атом вещества является сложной системой, построенной из более мелких частиц. Перед физикой встала проблема строения атома. Как устроен атом Первая (статическая) модель атома была предложена в 1903 г. Дж. Дж. Томсоном, согласно которой положительный заряд и масса распределены равномерно по всему атому, имеющему форму сферы радиуса 10 м. Отрицательные электроны расположены внутри этой сферы, образуя некоторые конфигурации, и взаимодействуют с отдельными ее элементами по закону Кулона. Электроны в атоме пребывают в некоторых равновесных состояниях. Если электрон получает малое смещение, то возникает квазиупругая сила — и электрон начинает совершать колебания около рав1Ювесного положения и излучать световые волны. Хотя модель Томсона объясняла некоторые явления, все же вскоре выяснилась ее несостоятельность.  [c.10]


Если jА, г I = 2-— < I, т. е. отношеине размеров системы зарядов к длиие испускаемой волны меньше единицы, то множитель —> ->  [c.255]

При ударе о поверхносчъ пластины снаряда либо при подрыве около нее детонирующего заряда с противоположной ее стороны может отслоиться или отколоться кусок материала (рис. 7.5,а). Чтобы понять механизм явления откола, рассмотрим импульс сжимающего напряжения, проходящий через пластину в результате удара о левую поверхность, изображенный на рис. 7.5,6. Когда волна сжатия проходит через пластину и достигает ее свободной. поверхности, она отражается от этой свободной поверхности в виде волны растяжения. Отраженная волна растяжения взаимодействует с падающей волной сжатия. Этот процесс изображен на рис.  [c.355]

Электродинамика (и оптика) движущихся сред, развитая Ло-рентцом, есть часть его общей электронной теории, в силу которой все электромагнитные свойства вещества обусловливаются распределением электрических зарядов и их движением внутри неподвижного эфира. В качестве формул преобразования координат при переходе от одной инерциальной системы к другой сохраняются преобразования Галилея, и, поскольку отрицается принцип относительности, уравнения электродинамики Лорентца не являются инвариантными по отношению к этим преобразованиям. Теория Лорентца означала очень крупный шаг вперед и разрешала большой круг вопросов, представлявших значительные теоретические трудности. В случае оптических явлений она совпадает с теорией Френеля и также приводит к представлению о частичном увлечении световых волн. По теории Лорентца движение вещества есть движение молекул и связанных с ними зарядов в неподвижном эфире, и учет этого движения показывает, что в среде, движущейся со скоростью V, свет распространяется со скоростью q + (1 — in )v, где l — скорость света в неподвижной среде. Таким образом, теория Лорентца приводит к формуле частичного увлечения Френеля, хорошо подтвержденной тщательными измерениями.  [c.449]

В настоящем разделе мы рассмотрим задачу более формально, исследуя зависимость диэлектрической проницаемости среды от частоты световых волн, вызывающих смещение электрических зарядов вещества. Как показывает явление Зеемана (см. гл. XXXI), главную роль в оптической жизни атома играет электрон поэтому в дальнейшем мы для удобства будем говорить именно об электроне однако все наши рассуждения остаются в силе и для иных заряженных частиц, входящих в состав атома. В частности, при исследовании показателя преломления в области длинных волн необходимо учитывать влияние ионов, способных к сравнительно медленным (инфракрасным) колебаниям.  [c.549]

В направлении вдоль магнитного поля компонента с у излучаться не будет вследствие по-перечности световых волн, две другие компоненты с у + Ау и у — Ау представятся в виде циркулярно-поляризованного света правого и левого вращения. При этом в случае отрицательного знака заряда е левая поляризация обнаруживается у линии уменьшенной частоты красная компонента) (см. рис. 31.3,6), а правая — у линии увеличенной частоты (фиолетоедя компонента) (см, рис. 31.3, а). В случае положительного заряда е направление круговой поляризации у красной и фиолетовой компонент должно быть обратным. Мы видели в 170, что опыт дает соотношение, соответствующее отрицательному знаку заряда.  [c.624]


Смотреть страницы где упоминается термин Волны заряда : [c.71]    [c.291]    [c.260]    [c.117]    [c.162]    [c.235]    [c.21]    [c.56]    [c.172]   
Механика электромагнитных сплошных сред (1991) -- [ c.260 ]



ПОИСК



Градиентные силы, действующие на заряд в стоячей электромагнитной волне

Диэлектрическая проницаемость и распространение волн в средах со свободными зарядами

Заряд

Излучение электромагнитных волн поверхностными токами и зарядами

Распространение электромагнитной волны в изотропной среде, свободной от электрического заряда



© 2025 Mash-xxl.info Реклама на сайте