Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Компрессоры газовые поршневые

Во втором разделе в большинстве случаев также приводятся простейшие расчетные формулы и таблицы. Помимо упрощенных приемов, в ряде параграфов изложены более подробные, уточненные методы. Однако п при этом основное внимание уделено выявлению физических основ задачи, простоте и удобству расчета. В этом разделе приведен не только расчет деталей, обычно рассматриваемых в курсах и справочниках по деталям машин, ио также и деталей поршневых двигателей, осевых компрессоров, газовых турбин и др. Ряд расчетов приведен в форме, удобной для накопления статистических данных по напряженности деталей. Для особо ответственных деталей расчет должен быть уточнен в соответствии с рекомендациями и методами, излагаемыми в специальной литературе.  [c.3]


Контроль за действием компрессора осуществляется с помощью расположенных перед и за компрессором газовых манометров и масляного манометра. Регулировку компрессоров выгоднее всего производить качественным методом путем изменения числа оборотов. Количественная регулировка поршневых компрессоров путем дросселирования существенного эффекта не дает и способствует значительному снижению к. п. д. При неизменном числе оборотов можно просто, хотя и  [c.129]

Условия работы газовой турбины зависят от типа связи между турбиной, компрессором и поршневым двигателем.  [c.194]

Диапазон возможных скоростных режимов работы двигателя может быть ограничен различными факторами. Максимальный допустимый скоростной режим ограничивается, например, тепловой и механической напряженностью деталей двигателя, условиями протекания рабочего процесса и совместной работы компрессора, газовой турбины и поршневой части и многими другими факторами. Минимальный допустимый скоростной режим определяется условиями устойчивой работы двигателя.  [c.268]

Широко применяемое при расчете газовых компрессоров и поршневых двигателей понятие о механическом к. и. д. =  [c.96]

Для сжатия воздуха в газовых турбинах применяют не поршневые, а преимущественно центробежные и аксиальные (лопаточные) компрессоры в них, а также на лопатках газовых турбин рабочее тело движется с большими скоростями, что сопровождается трением как в самом газе, так и между газом и стенками. Часть кинетической энергии движущегося газа затрачивается на трение эта энергия превращается в тепло и усваивается газом. Как было сказано, трение — процесс необратимый сжатие и расширение газа по адиабате при наличии трения сопровождаются ростом энтропии, и эти процессы в Ts-диаграмме не будут изображаться прямыми, параллельными оси ординат.  [c.167]

Рабочий процесс идеального газового компрессора более подробно рассмотрим на примере поршневого компрессора, принципиальная схема которого показана на рис. 7.5. При движении поршня направо (по чертежу) воздух или иной газ при давлении через всасывающий клапан 1 (обычно открываемый давлением внешнего воздуха или газа) поступает в цилиндр компрессора. Всасывание продолжается в течение хода поршня от его крайнего левого до крайнего  [c.92]

Комбинированный ДВС (рис. 5.2) включает поршневую часть 1, несколько компрессоров 3 и газовых турбин 2, а также устройства 4 для подвода и отвода теплоты, объединенные между собой общим рабочим телом. В качестве поршневой части комбинированного двигателя используется поршневой ДВС.  [c.220]


Энергия комбинированного двигателя передается потребителю через вал поршневой части или газовой турбины, а также обоими валами одновременно. Количество компрессоров и расшири-  [c.220]

При осуществлении действительных циклов с продолженным расширением в комбинированных двигателях, состоящих из поршневого двигателя и лопаточных машин (газовых турбин и компрессоров), часть цикла в области высоких давлений, температур и малых удельных объемов рабочего тела осуществляется в поршневом двигателе, а часть  [c.236]

Если мощность поршневой части полностью расходуется на привод компрессора, а полезная мощность снимается с вала турбины, работающей на выпускных газах, то такая установка называется газовой турбиной с генератором газа.  [c.239]

Существуют различные типы газовых компрессоров. Это могут быть поршневые машины, в которых поступающий газ низкого давления сжимается в цилиндрах поршнем. Поршневые компрессоры часто применяются для получения газа с очень высокими давлениями. В авиационной технике и в промышленности вообще большое распространение получили компрессоры непрерывного действия, в которых передача энергии протекающему газовому потоку в направляющих каналах или прямо в открытом объеме производится с помощью специальных вращающихся лопастей или систем лопаток. Вращающееся колесо с системой лопаток, или вентилятор, или воздушный винт, или водяной винт являются основными и типичными элементами компрессоров, передатчиков энергии газу от двигательных систем электромоторов, двигателей внутреннего сгорания, турбин и т. п.  [c.103]

Опорные узлы современных гидравлических, паровых и газовых турбин, двигателей внутреннего сгорания, поршневых компрессоров и других машин, а также приборов монтируются на подшипниках и подпятниках скольжения. Изыскание новых материалов, в том числе синтетических, обладающих малым коэффициентом трения и высокой износостойкостью, применение смазки значительно расширяют область применения подшипников скольжения.  [c.402]

В 30-х годах советскими конструкторами были созданы мощные авиационные поршневые двигатели и мощные дизели для гусеничных машин, а во время войны мощные авиационные дизели Важным техническим этапом совершенствования двигателей явился переход на комбинированные турбопоршневые двигатели, состоящие из поршневого двигателя, компрессора и газовой турбины.  [c.54]

Углеграфитовые антифрикционные материалы применяются для изготовления подшипников, поршневых колец, торцовых уплотнений, работающих при температурах от —80 до +400° С в условиях сухого трения и применяющимися в машинах и аппаратах химического машиностроения, шахтных, формовочных и печных конвейерах, в бумагоделательных, текстильных и других машинах жестких уплотнений в паровых и газовых турбинах, компрессорах, насосах.  [c.713]

Принцип действия тепловоза с механическим генератором газов состоит в следующем. Двигатель внутреннего сгорания, работая совместно с компрессором, образует механический генератор газов, который свою энергию в виде продуктов сгорания высокого давления и температуры, соответствующей перегретому пару, подаёт в газовый ресивер, откуда газ расходуется поршневой или турбомашиной.  [c.613]

Н, а также валов и корпусов иод них. Подшипниковые шейки валов и вкладыши двигателей, редукторов, паровых турбин, насосов. Поршневые пальцы дизелей, газовых двигателей, паровых машин. Цилиндры автомобильных двигателей. Поршни и цилиндры гидравлические устройств, насосов и компрессоров при средних давлениях и уплотнениях поршневыми кольцами  [c.651]

Подшипниковые шейки валов и вкладыши тихоходных двигателей, паровых машин. Цапфы осей неответственных гироприборов. Поршень н гильза тракторных двигателей. Поршневые кольца автомобильных и тракторных двигателей. Гильзы дизелей и газовых двигателей. Отверстия под втулки в шатунах дизелей, компрессоров, паровых машин, тракторных двигателей, в гидравлических устройствах средних давлений  [c.651]


В названных установках двигатель Дизеля используется в качестве привода компрессора возд ха. Смесь сжатого воздуха и отработавших газов дизеля используется далее в поршневой газовой машине, работающей при довольно низком давлении.  [c.243]

В устройствах, работающих по замкнутому циклу, в том числе и в двигателе Стирлинга, необходимо избегать потерь рабочего тела, поскольку такие потери снижают среднее давление цикла и, следовательно, выходную мощность. Имеется много путей для просачивания рабочего тела из внутренней полости двигателя например, водород под действием высоких давлений и температур будет диффундировать сквозь металлические перегородки, изготовленные из больщинства металлов и сплавов (особенно это относится к нержавеющей стали). Однако чаще всего основной причиной утечки является просачивание газа под давлением около поршней и их штоков. На первый взгляд такую утечку можно ликвидировать, установив обычные уплотнения, т. е. металлические кольца или кольца из шнура, поскольку, например, газовые компрессоры работают при давлениях, превышающих давление в двигателях Стирлинга. Однако рабочие температуры в двигателях Стирлинга выше, чем в компрессорах, и это усложняет решение проблемы уплотнений. В двигателях внутреннего сгорания рабочие температуры сопоставимы с температурами в двигателях Стирлинга, однако в двигателях Стирлинга уплотнения должны работать в атмосфе ре, не содержащей масла, поскольку при попадании масла из картера в рабочие полости происходит его пиролиз и образование углеродных отложений, засоряющих теплообменники и особенно высокопористые регенераторы. Кроме того, масло в картере может загрязняться просачивающимся рабочим телом. Усовершенствование уплотнений не должно производиться за счет увеличения трения, поскольку это может привести к недопустимому падению рабочих характеристик на валу двигателя. Из сказанного видно, что создание работоспособной конструкции уплотнения для двигателей Стирлинга с высоким внутренним давлением представляет достаточно серьезную проблему. Этот вопрос рассматривается в разд. 1.7. Необходимо уяснить, что использование газообразного рабочего тела, находящегося под высоким давлением, делает чрезвычайно вероятной утечку газа безотносительно к степени совершенства уплотняющих устройств. Следовательно, чтобы поддерживать выходную мощность двигателя на одном уровне в течение длительного периода эксплуатации, такая утечка должна компенсироваться. Практически это означает, что на двигателях Стирлинга с высоким давлением должен быть установлен компрессор, автоматически нагнетающий сжатый газ в двигатель при падении давления цикла ниже определенного уровня иными словами, должен быть обеспечен процесс подкачки . Компрессор может быть расположен как внутри двигателя, так и вне его. В двигателе с косой шайбой Форд — Филипс имеется внутренний поршневой компрессор, состоящий из небольших порш-  [c.81]

Осенью 1951 г. на авиационной выставке в Фарнборо (Англия) был экспонирован турбопоршневой двигатель Нэпир Номад , сочетающий работу двухтактного поршневого двигателя с осевым и центробежным компрессорами, газовой турбиной и реактивным соплом. По сообщению печати, мощность двигателя достигала 3000 л. с. на взлетном режиме, не считая дополнительной реактив-34  [c.34]

Благодаря хорошим энергетическим показателям по коэффициенту мощности (созф), к. п. д., жесткости механических характеристик, высокой устойчивости, а также повышенной надежности вследствие значительного воздушного зазора между статором и ротором синхронный двигатель стал почти монопольным для поршневых компрессоров. Для поршневых компрессорных установок средней и большой мощности применяют обычно тихоходные синхронные приводы (частота вращения от 125 до 375 об/мин) с использованием многополюсных синхронных двигателей при непосредственном сочленении двигателя и рабочей машины (воздушные, аммиачные, фреоновые и газовые поршневые компрессоры). Для поршневых компрессорных установок малой и средней мощности (до 180 кВт) при частоте вращения п=500 об/мин используют фланцевые приводы. Статор двигателя крепят фланцем к станине компрессора, а ротор, выполняющий одновременно функцию маховика, устанавливают на удлиненном конце коленчатого вала. Таким приводом мощностью 178 кВт снабжают двухступенчатые вертикально-горизонтальные воздушные компрессоры производительностью 0,5 м /с при давлении сжатия 900 кН/м2.  [c.9]

Существует много схем комбинированных двигателей. Так, в схеме, показанной на рис. 5.2, выпускные газы из поршневого двигателя с высокой температурой и давлением расширяются в газовой турбине 2, приводящей в действие компрессор 5. Компрессор 3 засасывает воздух из атмосферы и под определенным давлением подает его через охладитель 4 в цилиндры поршневой части 1. В охладителе понижается температура воздуха, вследствие чего возрастает его плотность, а главное, понижаются максимальная и ср)едняя температура газов в цилиндре, что способствует повышению надежности работы двигателя. Увеличение наполнения цилиндров двигателя воздухом путем повышения давления на впуске называют наддувом. При наддуве увеличивается свежий заряд, заполняющий цилиндр при впуске, по сравнению с зарядом воздзоса в том же двигателе без наддува.  [c.221]

Для сжатия и транспортирования природных и попутных нефтяных газов, а также для технологических нужд нефтеперерабатывающих и химических производств используются газомото-компрессоры. Г азомотокомпрессор представляет собой единый агрегат, состоящий из газового две и поршневого компрессора (рис. 5.17). В качестве топлива газового ДВС используется перекачиваемый газ.  [c.243]


Особая разновидность газовых силовых установок — газо-компрессоры, объединяющие в одном агрегате поршневой газовый двигатель и поршневой газовый компрессор. Поршневые газо-мотокомпрессоры широко применяются на компрессорных станциях магистральных газопроводов, нефтяных и газовых месторождениях для закачки газа в пласт, а также для сжатия газов на нефтеперерабатывающих и химических предприятиях. Основные преимущества газомотокомпрессоров — длительный срок службы, способность работать в широком диапазоне давлений, возможность регулирования производительности путем изменения частоты вращения вала агрегата при изменении вредного пространства в компрессорных цилиндрах, способность двигателя работать на газе, транспортируемом по газопроводу. Однако для этих машин характерны большие массы и габаритные размеры, динамическая неуравновешенность, требующая сооружения массивных фундаментов, неравномерность подачи газа, сложность клапанов компрессорных цилиндров.  [c.184]

В двухступенчатом газовом компрессоре типа US 1,6—1/9 поршневые кольца и уплотнительные элементы штоков изготовлены из наполненных фторопластовых материалов. Компрессор  [c.123]

Другая область применения уплотнений — это герметизащ1я полостей в машинах, содержащих газы и жидкости при высоких давлениях или под вакуумом. В роторных машинах (в паровых и газовых турбинах, центробежных и аксиальных компрессорах и т. д.) необходимо уплотнение вращающихся валов и роторов в поршневых машинах — уплотнение возврат-но-поступательно движущихся частей (поршней, плунжеров, скалок).  [c.86]

ЧНХТ Для деталей поршневых двигателей внутреннего сгорания, гаэомоторных компрессоров, а также целлюлознобумажного производства, работающих в условиях износа, газовых средах и водных растворах Маслоты поршневых, компрессионных и маслосъемных колец, седла и направляющие втулки клапанов дизелей и газомотокомпрес-соров. Детали сглаживающих прессов бумагоделательных машин и др.  [c.223]

ЧН1ХМД Для деталей поршневых машин, двигателей внутреннего сгорания и компрессоров, работающих в условиях износа и газовой коррозии (продукты сгорания топлива, технический кислород и т. д.) Блоки и головки цилиндров, выпускные патрубки двигателей внутреннего сгорания. Поршни и гильзы цилиндров паровых машин, тепловых и судовых дизелей, детали газомотокомпрессоров  [c.223]

ПК — паровой котел нормальной конструкции ВПГ — высоконапорный парогенератор КУ — паровой котел — утилизатор тепла отходящих газов ВКУ — водогрейный котел-утилизатор 1 — паровая турбина 2 — питательный насос 3 — газовая турбина или турбина, работающая на газопаровой смеси 4 — воздушный компрессор 5 — камера сгорания 6 — газовоздушный теплообменник 7 — испарительная камера 8 — мокрый водяной экономайзер 9 — влагосепаратор 10 — двигатель произвольного типа 11 — конденсатор теплового насоса 12 — редукционный клапан 13 — испаритель теплового насоса 14 — компрессор парового теплового насоса 15 — поршневой, газовый двигатель.  [c.19]

К компрессорным воздушно-реактивным двигателям относятся мотореактивные двигатели (МРД), в которых компрессор для сжатия воздуха приводится в действие поршневым двигателем, и турбореактивные (ТРД), в которых компрессор для сжатия воздуха приводится в действие газовой турбиной.  [c.177]

Например, в схеме реактивного двигателя, предложенного Уитлом (фиг. 228), двигатель Дизеля мог бы быть заменен ртутнопаровой турбиной, так как наличие поршневого двигателя ухудшает эксплоатационные качества этой схемы. В этом случае в камере сгорания, работающей под высоким наддувом, должны быть расположены поверхности нагрева ртутного котла. Ргутнопаровая турбина заменила бы дизель в качестве привода компрессора. Для повышение к. п. д. установки газовая тур-  [c.257]

До 1952 г. фирма Кларк была известна как производитель поршневых компрессоров и двигателей внутреннего сгорания. В 1952 г. фирма выпустила газотурбинную установку мощностью 5500 л. с., которая предназначалась для привода центробежного газового компрессора и была установлена на компрессорной станции в Марехиде (штат Кентукки, США) магистрального газопровода компании Теннеси Газ Транс-мишн К"  [c.143]

Исследователи использовали атмосферный воздух, который сжимали поршневым компрессором и затем очищ,али с помощью фильтров. После очистки и периодически во время опытов проводился газовый анализ, подтвердивший неизменность состава, в том числе постоянство количества кислорода после измерений при температурах выше 600° С. Это очень важно при высокотемпературных измерениях, так как свидетельствует об отсутствии взаимодействия вещества с металлом пьезометра. Состав воздуха, исследованного в [10], характеризуется следующими величинами (в процентах по объему) 78,0 0,2 — N2 21,0 0,05 — О2, 0,93 0,3 — инертные газы (Аг)  [c.8]

Давление природного газа в черте населенного пункта не должно превышать 1,2 МПа (требование правил безопасности). Для использования природного газа в качестве топлива его нужно сжать до давления, превышающего давление в цикле ГТУ на 0,3—0,5 МПа, т.е. до значения не менее 1,9 МПа. Для этих целей предназначены дожимные газовые компрессоры. В комплекте с ГТУ типа GT-35 поставлены и установлены на ГТУ-ТЭЦ два дожимных компрессора марки 2K0A-1W производства фирмы DRESSER RAND (США) основной и резервный. Эти компрессоры поршневого типа двустороннего действия (два цилиндра), производительностью 1,25 кг/с, частотой вращения 990 об/мин. Они поставляются блочно в звукозащитном контейнере и имеют дистанционное автоматическое управление.  [c.143]


Смотреть страницы где упоминается термин Компрессоры газовые поршневые : [c.173]    [c.91]    [c.159]    [c.142]    [c.220]    [c.221]    [c.192]    [c.396]    [c.151]    [c.152]    [c.152]    [c.153]    [c.154]    [c.155]    [c.156]   
Справочник энергетика промышленных предприятий Том 3 (1965) -- [ c.0 ]



ПОИСК



Газовые двигатели-компрессоры и свободно-поршневые генераторы газа

Газовые компрессоры

КОМПРЕССОРЫ ПОРШНЕВЫ

Компрессорий

Компрессоры

Компрессоры поршневые

Циклы идеальных поршневых газовых двигателей и газовых турбин Рабочие процессы поршневых компрессоров. Циклы холодильных установок и идеальных реактивных двигателей



© 2025 Mash-xxl.info Реклама на сайте