Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы термомеханические и механические

Источники энергии для термомеханических и механических процессов сварки давлением (контактная, термопрессовая, холодная и другие виды сварки) должны обеспечивать концентрацию тепловой или механической энергии в зоне сварки, а также давление, достаточные для создания физического контакта, активации и химического взаимодействия атомов соединяемых поверхностей.  [c.26]


В зависимости от формы энергии, используемой для образования сварного соединения, сварочные процессы делятся на три класса термический, термомеханический и механический.  [c.6]

Термомеханические и механические процессы. В термомеханических и механических процессах преобладают внутренние носители энергии, в которых она преобразуется в теплоту главным образом вблизи контакта соединяемых изделий - стыка.  [c.13]

Основа классификации по физическим признакам — вид энергии, применяемой для получения сварного соединения. По физическим признакам все сварочные процессы относят к одному из трех классов термическому, термомеханическому и механическому.  [c.8]

Однако приведенные показатели не позволяют сравнивать между собой процессы разных классов — термические, термомеханические и механические. В то же время часто имеется  [c.26]

Рассмотрение термодинамической структуры процессов сварки позволяет подразделить их по виду введенной энергии на термические (Т), термомеханические (ТМ) и механические (М) процессы.  [c.18]

При классификации процессов сварки целесообразно выделить три основных физических признака наличие давления, вид вводимой энергии и вид инструмента — носителя энергии. Остальные признаки можно условно отнести к техническим или технологическим (табл. 1.1). Признак классификации по наличию давления применим только к сварке и пайке. По виду вводимой в изделие энергии все сварочные процессы, включая сварку, пайку, резку и др., могут быть разделены на термические, термомеханические и прессово-механические способы.  [c.20]

К термомеханическим процессам относятся процессы, идущие с введением теплоты и механической энергии сил давления при осадке. Теплота может выделяться при протекании электрического тока, газопламенном или индукционном нагреве, введении в зону сварки горячего инструмента и т. п. Сварка может вестись как с плавлением металла (частичным или по всему соедине-  [c.24]

В работах Р. Клаузиуса наука о тепловых процессах получила название механической теории тепла . В применении к термомеханической системе закон сохранения и превращения энергии (первый закон термодинамики) записывается так  [c.21]

В зависимости от характера вводимой энергии все сварочные процессы (сварку, пайку, резку) можно отнести к термическим (Т), термомеханическим (ТМ) и механическим (М) методам.  [c.446]

Структура и механические свойства сварного соединения изменяются не только под влиянием нагрева. Изменения происходят и при механических или термомеханических методах сварки. Часто повышение твердости и снижение пластичности в околошовной зоне происходит вследствие физического упрочнения (наклепа). Подобные явления могут, например, иметь место при холодной и ультразвуковой сварке, когда процесс образования сварного соединения сопровождается значительными пластическими деформациями без существенного нагрева.  [c.497]


Таким образом, не только режимы термического и механического нагружения, но и процесс упругопластического деформирования в опасных точках имеет нестационарный характер. Особенностью термомеханического напряженного состояния кромки лопатки является неоднородность распределения температур и напряжений наиболее неблагоприятное сочетание напряжений и температур (но не экстремальных) имеет место в полуцикле нагрева, когда в кромке действуют сжимающие напряжения. В целом для лопатки возможно сочетание как сжимающих, так и растягивающих напряжений в полуцикле высокотемпературного нагрева. Пластическое деформирование кромок приводит к возникновению поля остаточных напряжений при однородном тепловом состоянии и к изменению распределения напряжений по сечению в последующих циклах. При этом в формировании предельных состояний существенной оказывается роль процессов ползучести и релаксации [20, 29, 64, 68], протекающих наиболее интенсивно на этапе стационарного режима (период выдержки) и при наличии определенного уровня статических напряжений.  [c.27]

При определении характеристик трещиностойкости сварных соединений необходимо учитывать структурно-механическую неоднородность соединений, обусловленную локальностью процессов термомеханического поведения металла при сварке. Такая локальность Приводит к образованию полей остаточных напряжений и деформаций, изменению структуры и фазового состава, возникновению микро- и макродефектов [1-2].  [c.79]

Анализ работоспособности теплонапряженных конструкций неразрывно связан с изучением поведения конструкционных материалов в условиях совместных тепловых и механических воздействий. При этом материал конструкции рассматривается как сплошная среда и для описания его свойств может быть использован аппарат механики деформируемого твердого тела [И, 40]. Протекающие в материале термомеханические процессы характеризуются изменением температурного, деформированного и напряженного состояний. Описание этих процессов составляет предмет термомеханики — одного из направлений механики деформируемого твердого тела.  [c.7]

Размер аустенитного зерна — важнейшая структурная характеристика нагретой стали. От размера зерна аустенита зависит поведение стали в различных процессах термомеханической обработки и механические свойства изделия.  [c.434]

Начиная с последних лет XIX столетия, все возрастающее внимание отечественных и зарубежных материаловедов уделяется разработке способов и созданию аппаратуры, обеспечивающих возможность прямого изучения микроскопического строения и свойств металлов и сплавов, подвергаемых различным режимам нагрева и механического нагружения. Этот интерес связан с тем, что именно под влиянием температурно-временного фактора, например, в стали, являющейся одним из основных материалов современного машиностроения, протекают полиморфные превращения, а также происходят процессы рекристаллизации, отпуска, старения и отжига, определяющие уровень прочностных свойств изделий. В зависимости от температуры испытания или эксплуатации и режимов предварительной термической механической и. термомеханической обработки и скорости нагружения инициируются и развиваются в поликристаллических материалах механизмы внутри- и межзеренной деформации, сказывающиеся на эксплуатационных свойствах материалов.  [c.5]

В "Справочнике приведены сведения о химическом составе, физических и механических свойствах, термомеханических параметрах, технологических процессах ковки и штамповки цветных металлов и сплавов на их основе.  [c.2]

С другой стороны, и температуры, и деформации в процессе ковки и штамповки надо принимать в таких пределах, которые создавали бы термомеханические- условия получения заданной структуры. Структура может быть или не рекристаллизован-ной с деформированными кристаллитами в направлении течения металла, имеющими механическое упрочнение, или рекристаллизованной, в которой механическое упрочнение практически полностью снимается в процессе рекристаллизации и кристаллиты приобретают округлую форму.  [c.78]

Оглавление дает достаточное представление о структуре- и содержании учебника. Для многих сплошных сред и тел с простыми и сложными физическими свойствами изучающий узнает полные замкнутые системы разрешающих уравнений, типичные граничные условия и условия на волновых фронтах, постановки краевых задач, простые методы их анализа на основе теории размерностей и подобия и получит доступ к свободной проработке и активному использованию любого из перечисленных выше разделов МСС но что, пожалуй, более важно — изучающий научится методам построения фундаментальных математических моделей механики сплошных сред, познакомится с методом построения полных систем уравнений МСС, особенно уравнений состояния среды, т. е. в определенной мере научится переводить на язык математики и ЭВМ интересующие естествознание и практику новые явления природы, процессы в новых материалах и средах с заранее неизвестными физико-механическими свойствами. Поэтому автор придает значение гл. III и V, в которых разъясняются особенности взаимодействия термомеханических и электромаг-  [c.4]


Последовательность событий в процессе трения и изнашивания включает механический контакт и адгезионное взаимодействие поверхностей под воздействием нормальной нагрузки упругопластическую деформацию приповерхностных объемов материалов в области фактических пятен контакта под воздействием приложенных нормальных и тангенциальных нагрузок, возникающих в результате механического и адгезионного взаимодействий контактирующих участков явления, сопутствующие упругопластической деформации контактирующих участков, в том числе тепловыделение и массоперенос элементов контактирующих тел и рабочей среды повреждение и разрушение поверхностей трения вследствие многократных термомеханических воздействий.  [c.141]

Южаков И. В Ямпольский Г. Я-t Рыбин в. и. Абразивная износостойкость и механические свойства наплавленного металла, подвергнутого термомеханической обработке в процессе восстановления деталей автомобилей. — В кн. Автомобильный транспорт. Харьков Техника.  [c.276]

Для правильного расчета показателей эффективности сварочных процессов необходима их четкая классификация. Сварочные и разделительные процессы в энергетическом отношении можно разбить на три основные группы I — термические, П — термомеханические и HI — механические процессы (табл, 2). Разные сварочные процессы отличаются в первую  [c.202]

Термомеханические и механические процессы осуществляются обязательно с приложением давления (сварка давлением). Кшерлю-механическим относятся процессы, протекающие с введением теплоты и механической энергии сил давления. Сварка может вестись как с плавлением металла, так и без плавления, т. е. в твердом состоянии. Теплота может выделяться при протекании электрического тока, газопламенном или индукционном нагреве.  [c.362]

Процесс сварки делят на три класса (ГОСГ 19521—74) термический, термомеханический и механический. Термический класс объединяет виды сварки, осуществляемые плавлением металла. Термо.ме.хапический класс включая виды сварки, осуществляемые давлением с использованием тепловой энергий. К меха-ннческо.му классу о[носился ви ты сварки, выполняемые давлением с дополнительной механической энергией.  [c.5]

Термомеханические спо9обы основаны на одновременном протекании тепловых и механических процессов.  [c.36]

Наибольшее раопространение получила методика испытаний закрепленного образца при термоциклическом нагреве, предложенная Коффиным [88], существенно развитая в работах советских ученых [2, 13, 27, 62, 71, 78]. В основе этой методики лежит представление о термомеханическом состоянии элементарното объема материала в опасной, наиболее нагруженной точке конструктивного элемента, подвергающегося циклическому нагреву [36]. Модель термоциклического нагружения может быть представлена в виде процесса, показанного а рис. 9 рабочий элемент 1 соединяется с эластичным элементом 5 осуществляется циклический нагрев. Элементы 2 3 (жесткость С2=о° Со<С1) обеспечивают дополнительную тепловую деформацик> за счет прогрева и механические связи со стороны прилегающих объемов детали.  [c.18]

Особое внимание обращено на общие теоретические основы кузнечно-штам-повочного производства, отражённые, в частности, в статьях Элементы теории пластической деформации" и Термомеханический режим ковки металлов". Эти статьи обеспечивают читателю возможность обоснования разрабатываемых технологических процессов с учётом соотношений между основными термомеханическими факторами, пластичностью и механическими свойствами стали и сплавов.  [c.559]

Необходимо отчетливо понимать, что для пеизолированной (в тепловом и механическом отношениях) термомеханической системы при наличии одного теплового резервуара единственным обратимым процессом является изотермический процесс.  [c.31]

В этой главе будут обсуждены различные технологические процессы произ водства порошков, методы их уплотнения, способы термомеханической обработк и механические свойства порошковых материалов. Будут рассмотрены также кри терии, определяющие их применимость в различных конструкциях, и общие тен денции по использованию порошковых материалов в будущем.  [c.220]

УДО материалы упрочняются сверхмелкими дисперсными выделениями оксидов, таких как Y2O3, образующимися при высокой температуре, когда у-фаза, выделения которой обычно служат упрочняющими центрами, становится нестабильной. Требуемые механические свойства промышленных УДО материалов, таких как МА-754 и МА-6000, достигаются с помощью термомеханической обработки. Были разработаны соответствующие технологические процессы термомеханической обработки, приводящие к формированию стабильной структуры с  [c.256]

Необходимо также помнить и о влиянии поверхностного слоя. В большинстве случаев термическая усталость приводит к образованию трещин, начинающихся в поверхностном слое материала. Большое значение здесь имеет как шероховатость самой поверхности. Так и технологический процесс, формирующий окончательный вид детали. При коррозионном воздействии среды надйе. надрезов, оставшихся после механической обработки, образуются зародыши трещин. Исследования, касающиеся создания благоприятного состояния внутренних напряжений в поверхностном слое, например, с помощью обкатки, не подтвердили их положительного влияния из-за процессов возврата и рекристаллизации структуры. Более целесообразным кажется применение термомеханической обработки, которая существенно изменяет прочностные показатели. Повышение сопротивления термической усталости было достигнуто путем введения в поверхностный слой хрома с помощью диффузионного хромирования [111, 121] или нитроцианирования [121]. Продолжаются,, работы по внедрению других легирующих элементов в поверхностный слой, например бора.  [c.88]


Сочетание мощных нестационарных тепловых потоков и больших циклических механических нагрузок характерно для конструктивных элементов газовых турбин [10, 75, 100]. Это в первую очередь относится к деталям проточной части авиационного газотурбинного двигателя (ту рбинные диски, паровые трубы, рабочие и сопловые лопатки турбинной части, элементы форсажной камеры и др.), в котором рабочий тепловой режим по сравнению с агрегатами тепловой энергетики реализуется за сравнительно короткое время (1...2 ч). В связи с этим цикличность процесса термомеханической нагруженности таких элементов становится более существенной. В формировании предельного состояния материала относительная доля повреждений от термоциклических воздействий становится заметной в общем числе повреждений, вызванных другими видами усилий [28, 29, 60].  [c.15]

Сложность конструктивной формы, высокая интенсивиость тепловых потоков в эксплуатации не позволяют, как правило, при стендовых испытаниях точно моделировать тепловые и механические процессы. В связи с этим несомненный интерес представляет методика исследования процессов термомеханического нагружения опасных зон (кромок) лопаток путем испытания клиновидных образцов [101, 102]. Метод позволяет моделировать условия работы лопатки при различных внешних термомеханических воздействиях.  [c.159]

На основании этих определений в основу классификации процессов сварки и резки положен вид энергии, вводимой для получения соединения или для резки. Таких видов энергий два — тепловая энергия и механическая. В соответствии с этим все основные сварочные процессы подразделяются на термические — Т, термомеханические (термопрессовые) — ТМ и механические (прессовомеханические) — М. Признак наличия давления применим только к сварке. Данная классификация введена в ГОСТ 19521—74. По этой классификации сварка, связанная с Т-процессами, осуществляется путем введения тепловой энергии без механического давление и носит название сварки плавлением. К таким процессам относятся электродуговая, электрошлаковая, литейная, термитная, индукционная сварка, лучевые сварки и т. д.  [c.9]

Значительно более высоких значений конструктивной прочности (высокие значения прочностных свойств и вяз кости разрушения) можно достичь при высокотемператур ной термомеханической обработке (ВТМО) По различ ным данным, в случае оптимального режима ВТМО в ста лях повышается ударная вязкость, понижается порог хлад ноломкости, растет сопротивление усталостному разруше нию, понижается чувствительность к концентраторам напряжений, растут характеристики вязкости разрушения Комплекс механических свойств, получаемый при ВТМО, зависит от соотношения процессов упрочнения и  [c.232]

До недавнего времени операции пластической деформации рассматривались в основном как связанные с формоизменением. Хотя и ранее было известно, что энергия, затрачиваемая на деформирование, больше энергии, выделяемой в процессе деформирования, после пластической деформации эту накопленную энергию из металла изгоняли . Затем, приступая к термической обработке вновь осуществляли процессы, приводящие к метастабильному состоянию, обеспечивающему высокую прочность. Несмотря на очевидную целесообразность совмещения обоих мощных факторов воздействия на структуру—пластической деформации и фазовых превращений, — такие комбинированные технологические процессы долгое время почти не имели распространения. Только понимание роли, которую играют несовершенства строения в процессах структурообразования и формирования многих важнейших структурночувствительных свойств (главным образом механических), металлов и сплавов, позволило создать фундамент для развития термомеханической обработки.  [c.14]

Реализация этой проблемы, помимо оптимизации состава стали и повышения ее чистоты по содержанию примесей, требует проведения работ по разработке и внедрению новых технологических схем упрочнения, которые направлены на повышение всего комплекса механических свойств, определяющих сопротивление пластической деформации и сопротивление разрушению в разных интервалах температур и условий нагружения. В этом последнем направлении наиболее перспективным является использование термомеханической обработки, сочетающей в едином металлургическом цикле обработки пластическую деформацию и фазовые превращения, что оказывает наиболее эффективное воздействие на структурное и субструктурное состояние стали и, соответственно, на указанный выше комплекс свойств. Варианты ТМО, сочетающие горячую или теплую деформацию стали в аустенитном состоянии с последующей закалкой на мартенсит (ВТМО или ВТМУ) или такие схемы ТМО, в которых используется деформированный и деформируемый в изотермических или в близких к ним условиях аустенит, позволяют существенно улучшить свойства сталей. При осуществлении процесса термомеханической обработки в условиях существующих цехов на металлургических предприятиях особые трудности возникают в случае практической реализации схем, связанных с изотермическими процессами, так как для этого требуется регламентация условий нагрева, промежуточного охлаждения, условий деформации и окончательного охлаждения. Все, строго говоря, требует привлечения математического моделирования с использованием метода математических обратных задач, что позволяет компьютеризировать эти процессы ТМО.  [c.448]

Механизм коррозионных разрушений сварных соединений определяется приложением энергии в месте соединенияз тепловой энергии при сварке термического класса (дуговой, газовой, электрошлаковой, электроннолучевой, лазерной, плазменно-лучевой) давления и тепловой энергии при сварке термомеханического класса (контактной, диффузионной, дугопрессовой, газопрессовой и др.) механической энергии и давления при сварке механического класса (холодной, взрывом, магнитно-импульсной, ультразвуковой, трением). При этом происходят необратимые физико-химические изменения металла в зоне соединения вследствие процессов плавления и кристаллизации полимерные превращения распад пересыщенных твердых растворов старение, рекристаллизация усложнение напряженного состояния в связи с возникновением собственных напряжений и деформаций.  [c.494]

По методам ИМЕТ-1 [2] тонкие или стандартные стержневые образцы нагревают в специальной машине током и охлаждают в соответствии с заданными термическими циклами. В процессе нагрева или охлаждения образцы могут быть подвергнуты либо деформации, либо разрыву при заданной мгновенной температуре или в заданном интервале температур (в зависимости от скорости деформации), а также могут быть резко охлаждены в воде, чтобы было зафиксировано структурное состояние. Это позволяет исследовать кинетику изменения механических свойств и структуры металла в различных участках зоны термического влияния в процессе сварки и термической обработки, а также программировать и осуществлять сложные температур-ио-деформационные воздействия при термомеханической обработке стали (методом растял-сения). С помощью этой машины молено определять и конечные изменения структуры и свойств после полного охлаждения образцов до комнатной температуры.  [c.84]

В современной технике чрезвычайно важную роль играют процессы преобразования теплоты в ра(5оту, осуществляемые в машинах, называемых тепловыми двигателями. На основе изложенного тепловой двигатель с термодинамической точки зрения можно рассматривать как систему с двумя степенями свободы— тепловой и механической термомеханическая система).  [c.27]


Последовательное рассмотрение процессов упругого деформирования и теплопроводности в их взаимосвязи возможно только на основе термодинамических соображений. Томсон (1855) впервые применил основные законы термодинамики для изучения свойств упругого тела. Ряд исследователей [Л. Д. Ландау и Е. М. Лифшиц (1953) и др.] с помощью методов классической термодинамики получили связанные уравнения термоупругости. Однако в рамках классической термодинамики строгий анализ справедлив лишь для изотермического и адиабатического обратимых процессов деформирования. Реальный процесс деформирования, неразрывно связанный с необратимым процессом теплопроводности, является в общем случае также необратимым. Термодинамика необратимых процессов, разработанная в последние годы, позволила более строго поставить задачу о необратимом процессе деформирования и дать единую трактовку механических и тепловых процессов, нашедшую отражение в работах Био (1956), Чедвика (1960), Боли и Уэйнера (1960) и др. В связи с этим более четко определилась теория термоупругости, обобщающая классическую теорию упругости и теорию теплопроводности. Она охватывает следующие явления перенос тепла теплопроводностью в теле при стационарном и нестационарном теплообмене между ним и внешней средой термоупругие напряжения, вызванные градиентами температуры динамические эффекты при резко нестационарных процессах нагрева и, в частности, термоупругие колебания тонкостенных конструкций при тепловом ударе термомеханические эффекты, обусловленные взаимодействием полей де( юрмации и температуры.  [c.6]


Смотреть страницы где упоминается термин Процессы термомеханические и механические : [c.18]    [c.615]    [c.285]    [c.29]    [c.334]    [c.18]   
Сварка Резка Контроль Справочник Том1 (2004) -- [ c.13 ]



ПОИСК



Процесс механические

Термомеханические процессы



© 2025 Mash-xxl.info Реклама на сайте