Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Окисление металла газами окислами

При невысоких температурах (до 400°), когда графитизация и аллотропическое превращение исключаются, рост происходит только за счет коррозии, т. е. окисления металла газами, проникающими в графитные выделения. При этом образуются ЗЮз и другие окислы, обладающие большим объемом. Чем крупнее и прямолинейнее графит ные выделения и чем больше в чугуне кремния и углерода, тем сильнее его рост.  [c.114]

Окисление металла при сварке 154 Окисление металла газами 155 Окисление металла шлаками 156 Окисление металла окислами 156 Ограниченно сваривающиеся стали 186  [c.638]


Окисление металла газами происходит в дуговом промежутке (в процессе переноса капель электродного металла в сварочную ванну) и в сварочной ванне. При этом окисляются (выгорают) химические элементы, содержащиеся в электродном и основном металле. При сварке стали в первую очередь окисляется железо, другие элементы окисляются с различной интенсивностью.  [c.11]

Опытные данные о влиянии скорости движения газовой среды на скорость окисления металлов (рис. 38, 39 и 96), согласно которым уже при небольших скоростях газового потока достигаются предельные значения скорости окисления металлов при данной температуре, указывают на то, что окисление металлов, дающих при окислении полупроводниковые окислы /7-типа, контролируется не только диффузией реагентов через окалину, но и переносом окислителя к поверхности раздела окалина — газ, т. е. внешней массопередачей (см. с. 65). Таким образом, увеличение скорости движения газовой среды в какой-то степени эквивалентно повышению парциального давления окислителя.  [c.135]

От соприкосновения с воздухом расплавленные металлы сильно окисляются. Поэтому их циркуляционные контуры должны быть герметичными и заполнены нейтральным газом. В противном случае на поверхности нагрева осаждается слой окислов и теплоотдача-ухудшается. Для расчета средних коэффициентов теплоотдачи при вынужденном турбулентном движении в окисленных трубах получена формула [721  [c.297]

В условиях сварки плавлением основной задачей металлургической обработки металла шва является защита его от окисления и очищение от неметаллических включений [2]. Металл может окисляться газами, окружающими место сварки, шлаками, образующимися из покрытий электродов и флюсов, и различными загрязнениями (ржавчина, окалина), имевшимися на свариваемой поверхности.  [c.356]

Плавка красной меди ведётся в пламенных печах с рафинированием окислительным пламенем для удаления из меди примесей свинца, сурьмы, олова, железа, цинка, никеля и серы. Окисляясь, некоторые примеси всплывают в шлак, другие удаляются в виде газов. Плавка состоит из операций 1) загрузки металла в печь 2) расплавления металла 3) скачивания шлака 4) окисления металла 5) восстановления окислов ( дразнения ) 6) разливки металла. Густой шлак разжижают добавкой песка.  [c.191]

Диаграмма, приведенная на рис. 10, дает наглядное представление о способности атмосферы окислять или восстанавливать железо при данных условиях сжигания топлива, т. е. при заданных значениях коэффициента расхода воздуха а и температуры. Из диаграммы видно, что для устранения окисления металла при заданной температуре нагрева необходимо поддерживать в печной атмосфере строго определенное соотношение СО2/СО и Н2О/Н2. Для всего интервала температур подогрева стружки условия безокислительного нагрева создаются при сжигании газа в печи с коэффициентом расхода воздуха, равным 0,5. При этом следует иметь в виду, что данные диаграммы указывают только на термодинамику процесса окисления и не учитывают кинетику процесса.  [c.23]


Механизм наводороживания алюминия при взаимодействии с влагой изучали А. А. Жуховицкий и др. [3]. Согласно полученным ими данным, образование водорода происходит на границе металла с окислом в результате окисления алюминия водяным паром. Поскольку окисная пленка на алюминии плохо проницаема, при окислении в образцах накапливается много водорода. Так, при 600° С и давлении водяных паров 18 мм рт. ст. содержание водорода в алюминии достигает значений, эквивалентных растворимости водорода при давлении 5—10 атм. В работе [232] рассмотрена задача о росте газовых пор в твердых металлах. Авторы исходили из того, что каждой температуре соответствует некоторое давление газа в порах, связанное с пластическими свойствами металла. Превышение этого давления ведет к увеличению объема пор. Если концентрация газов в растворе превышает критическую, то пора растет вследствие выделения в ней газа и повышения внутреннего давления. В противном случае растворенный газ и газ в порах находятся в равновесии. Увеличение объема поры приводит к уменьшению газового давления и в пору поступает новая порция газа, пока давление не повысится до критического.  [c.165]

Известно, что присутствие газов в металле шва вызывает снижение его физико-механических свойств. Влияние газов на снижение свойств металлов проявляется по-разному, в зависимости от рода их связи в металле и возможности выделения их при охлаждении и кристаллизации металла. Значительное содержание растворенных газов в металле является причиной возникновения пузырей, раковин, пор и уменьшения плотности металла, что приводит к снижению его пластичности и прочности. Наличие газов в виде химических соединений, таких как окислы, нитриды и гидриды, также может значительно уменьшить прочность и особенно вязкость металла и вызвать хрупкое разрушение конструкций. Это явление особенно резко сказывается при сварке активных металлов. Окисление металлов, кроме ухудшения механических свойств, понижает их стойкость против коррозии. Окисные включения также могут являться причиной появления газовой пористости, поскольку они сорбируют и удерживают газы в жидком металле.  [c.79]

Кроме весовых (гравиметрических) способов измерения скорости коррозии, нередко прибегают к объемным (волюметрическим). Это возможно в тех случаях, когда окисление металла сопровождается. расходованием или выделением газа. Так, при атмосферной коррозии расходуется кислород, а при кислотной — выделяется водород. Объем израсходованного кислорода или выделившегося водорода пропорционален весу окислившегося металла. Следя за изменением объема газа в некоторой замкнутой системе, можно получить данные для расчета скорости коррозии.  [c.17]

При газовой сварке металл ванны интенсивно перемешивается с газовым потоком пламени и вступает во взаимодействие с ним, в результате чего происходит окисление (соединение с кислородом), испарение отдельных компонентов (составляющих) металла, раскисление расплавленного металла, насыщение металла углеродом, водородом и др. В основном металл шва окисляется газами пламени горелки или кислородом воздуха. Растворяясь в стали, кислород вступает в соединение с легирующими компонентами, что увеличивает общее содержание кислорода в металле шва. Таким образом, избыточное содержание кислорода (в виде окислов или в чистом виде) приводит к снижению механических свойств сварного соединения. Кроме того, в процессе сварки содержание некоторых элементов (углерода, кремния, марганца и т. д.) в металле шва уменьшается, так как они выгорают. Вследствие этого также происходит - снижение механических свойств наплавленного металла. Процессы окисления и раскисления происходят одновременно и находятся во взаимосвязи. Так, например, восстановление железа из окислов в условиях сварки осуществляется в основном за счет окисления углерода, кремния, и марганца. Возможность протекания этих реакций зависит от температуры и процентного содержания элементов.  [c.90]

ЖИДКОГО металла полностью защищены. от вредного влияния кислорода и азота воздуха, а медленное охлаждение способствует наиболее полному удалению из наплавленного металла газов и шлаковых включений. Медленное охлаждение наплавленного металла обеспечивает также более благоприятные условия для наиболее полного протекания диффузионных процессов и, следовательно, легирования металла через проволоку и флюс. Полностью исключается возможность разбрызгивания металла. Причиной разбрызгивания металла, как известно, является реакция восстановления окислов железа углеродом с образованием углекислого газа. Возможность протекания этой реакции при наплавке под флюсом почти полностью исключается, так как отсутствует окисление металла.  [c.146]


Образующийся при этом кислород может вызвать окисление металла. Для того чтобы исключить появление окислов при наплавке и сварке деталей в среде углекислого газа, применяют электродную проволоку с повышенным содержанием раскисляющих элементов (кремния и марганца).  [c.104]

Процесс огневого рафинирования осуществляют в пламенных отражательных печах емкостью 200—250 т он состоит из расплавления чушек черновой меди, окисления примесей, удаления растворенных в металле газов и раскисления меди. Примеси окисляются продуванием расплавленной черновой меди воздухом, подаваемым через фурмы под давлением до 2 ат. При этом примеси окисляются в соответствии с их тепловыми эффектами в  [c.44]

Коррозия, возникающая при действии на металл газов, называется газовой коррозией. Окисные пленки на поверхности металла образуются очень быстро. Так как в атмосфере всегда содержится влага, газовая коррозия обычно сопровождается электрохимической коррозией, С повышением температуры окисление усиливается, пленка становится все толще, при этом меняется ее цвет на поверхности, например, стальных изделий появляются известные уже цвета побежалости. При высоких температурах окисление протекает особенно интенсивно, и окислы образуются в виде окалины.  [c.195]

Во время плавления основной и присадочный металлы сильно перегреваются иногда до температур, близких к температуре кипения. Это приводит к испарению металла и изменению химического состава сплава. Наличие газовой атмосферы вокруг плавящегося металла приводит в ряде случаев к окислению, взаимодействию металла с азотом и растворению в металле газов. Все это вызывает изменение химического состава наплавленного металла, образование окислов и других неметаллических включений, пор и трещин. Чем чище наплавленный металл, тем выше механические свойства сварного шва.  [c.456]

От соприкосновения с воздухом жидкие металлы сильно окисляются, на поверхности нагрева осаждается слой окислов и теплоотдача ухудшается. Поэтому при стальных трубах без защиты от окисления при помощи инертных газов надежнее пользоваться приближенной формулой  [c.396]

Обогреваемые трубы пароперегревателей подвергаются газовой коррозии не только с внутренней, но и с внешней стороны. Окисление внешних поверхностей труб пароперегревателей происходит под действием окислов серы, соединений ванадия (для котлов, работающих на сернистых мазутах), кислорода, которые содержатся в топочных газах. На выходе из пароперегревателя средняя температура перегретого пара у большинства современных котлов составляет 540—585 °С. Из-за неравномерности распределения тепловых нагрузок температура пара в отдельных змеевиках может повышаться до 600—620 °С, а температура стенки — до 625—640 °С. В таких условиях наблюдается усиление газовой коррозии труб пароперегревателей из легированных сталей перлитного класса одновременно как с внутренней, так и с внешней стороны. Когда толщина окисной пленки возрастает, в ней увеличиваются внутренние напряжения, что в сочетании с термическими приводит к механическому разрушению окисной пленки. Отделившиеся от стенки твердые частицы окалины или уносятся потоком перегретого пара, или постепенно забивают трубу, а оголенная поверхность металла снова окисляется с образованием новой пленки.  [c.54]

Металл нагреваемой заготовки, соприкасаясь и химически взаимодействуя с печными газами, содержащими кислород (водяной пар и углекислый газ), окисляется и обезуглероживается. При этом на поверхности металла образуется окалина, состоящая из окислов железа. Кроме печных газов на количество образующейся окалины влияют температура нагрева, химический состав металла заготовки и отношение ее поверхности к объему. Например, при 1300° С скорость окисления стальной заготовки в семь раз выше, чем при 850—900° С. С повышением отношения поверхности заготовки к ее объему количество окалины возрастает. С увеличением содержания углерода в стали количество окалины при нагреве уменьшается. Уменьшают окалинообразование и некоторые химические элементы — алюми-  [c.95]

В противоположность металлам, образующим окислы п-типа, для металлов, образующих окислы р-типа, при окислении по механизму Вагнера характерна определенная зависимость от величины давления газа, как это схематически было показано на рис. 39. В идеальном случае к реакции окисления приложим за-  [c.135]

Доводка плавки. После расплавления шихты в печи образуются три фазы, постоянно взаимодействующие между собой жидкий металл, жидкий шлак и дымовые газы от сгорания топлива, от продуктов разложения флюса и руды, от окисления металла и от засасываемого воздуха. Они двигаются над поверхностью шлака и отдают ему свой кислород, отчего он делается сильно окислительным. Высшие его окислы на поверхности соприкосновения с жидким железом восстанавливаются до закиси железа и обогащают ею металл и шлак. В металле она последовательно окисляет кремний, марганец и фосфор по реакциям (26), (27), (30), но процесс окисления идет во много раз медленнее, чем в конвертере, где металл взаимодействует с кислородом дутья, и почти все тепло от реакций идет на нагрев его, а потери в окружающее пространство малы.  [c.37]

Окисление металла газами происходит как в дуговом промежутке (в процессе переноса капель электродного металла в сварочную ванну), так и в сварочной ванне. При этом окисляются (выгораюг) химические элементы, содержащиеся в электродном и основном металле. При сварке стали в первую очередь окисляется железо, содержание которого является максимальным. Окисление других элементов происходит с различной интенсивностью. Чем больше степень сродства химического элемента с кислородом, тем быстрее идет окисление элемента. Ни>Ке перечислены некоторые химические элементы, содержащиеся в сталях, начиная с элемента с наибольшей  [c.155]


Электродвижущая сила этого элемента Етв. возникает при уменьшении свободной энергии АОг реакции окисления металла, что приводит к появлению концентрационного градиента, вызывающего диффузию (градиент поля, приводящий к миграции заряженных частиц, по Вагнеру, не возникает из-за равномерного распределения положительных и отрицательных зарядов в объеме окисла). На поверхности раздела металл — пленка протекает анодная реакция по фор- Ме Пленпа Газ муле (44)  [c.61]

Окисление углекислым газом может оказать существенное влияние на эксплуатацию реакторов типа Магнокс . Хотя даже в наименее коррозионно-стойких сталях при повышенной температуре общие потери металла малы и не влияют на целостность реакторных узлов, таких, как корпуса реакторов, парогенераторы, трубы перегревателей, многие изделия, например чехлы термопар, окисляются практически полностью и их приходится заменять в процессе работы. Наиболее существенное влияние окисление оказывает на зазоры между отдельными частями узлов, свободное перемещение которых необходимо. Образующаяся окисная пленка может стать первой причиной заклинивания деталей. Пленки, образовавшиеся внутри щелей, приводят к разрушению угловых  [c.142]

Окислительный период плавки начинают присадкой железной руды, которую дают в печь порциями. В результате присадки руды происходит насыщение шлака FeO и окисление металла по реакции (FeO)=Fe (+ + [0]. Растворенный кислород взаимодействует с растворенным в ванне углеродом по реакции [С] + [0] = = С0. Происходит бурное выделение пузырей СО, которые вспенивают поверхность ванны, покрытой шлаком. Поскольку в окислительный период на металле наводят известковый шлак с хорошей жидкоподвижностью, то шлак вспенивается выделяющимися пузырями газа. Уровень шлака становится выше порога рабочего окна и шлак вытекает из печи. Выход шлака усиливают, наклоняя печь в сторону рабочего окна на небольшой угол. Шлак стекает в шлаковню, стоящую под рабочей площадкой цеха. За время окислительного периода окисляют 0,3—0,6 % С со средней скоростью 0,3—0,5 % С/ч. Для обновления состава шлака одновременно с рудой в печь добавляют известь и небольшие количества плавикового шпата для обеспечения жидкоподвижности шлака.  [c.184]

Катастрофической коррозией называют окисление металла, происходящее при высокой температуре с непрерывно возрастающей скоростью. Ее причиной может быть экзотермическая реакция окисления металла, когда скорость удаления выделяющегося в ходе реакции тепла меньше скорости самой реакции это ведет к резкому росту температуры, достигающей значений, при которых металл может воспламениться (например, ниобий). Катастрофическая коррозия наступает также, когда образующийся окисел металла при высокой температуре летуч (молибден, вольфрам, осмий, ванадий). Сплавы, содержащие малые количества молибдена и ванадия, часто подвергаются катастрофической коррозии из-за образования низкоплавкях смесей окислов под слоем окалины. Эти смеси становятся жидким электролитом с хорошей электропроводностью. В этих условиях пористая окалина играет роль катода, с большой поверхностью, а металл основы становится анодом в результате возникает интенсивная электрохимическая коррозия. Если температура плавления смеси окислов ниже температуры окружающей среды, то жидкая фаза растворяет окалину и обнажает металл. Аналогичный эффект наблюдается в газовой фазе, содержащей окислы ванадия. Известны случаи катастрофической коррозии высоколегированных хромоникелевых сплавов под воздействием топочных газов, содержащих V2O5. Значительные количества ванадия содержатся в продуктах переработки некоторых сортов нефти.  [c.71]

При окислении тантала в интервале температур 6—900° С и значений парциального давления кислорода ро, =, 1,33-10 5,32-10 Па 1—400 мм рт. ст.) установлена зависимость, в соответствии с которой в условиях формирования окислов за счет хемосорбции число частиц пропорционально (ро,) - Аналогичный закон установ- -лен для случая растворения в чистом металле газа после диссоциа-вди на Два атома. >  [c.35]

Общие вопросы. Бенар и сотрудники [2—4] на примере железа и меди показали, что при значительном замедлении реакции поверхностного окисления при повышенной температуре путем уменьшения давления окисляющего газа вместо пленки окисла, непрерывно образующегося на поверхности металла, получается сколление зародышей окисла. Иными словами, при окислении металлов в условиях довольно низкого давления кислорода можно наблюдать процессы зарождения и роста кристаллов окисла.  [c.130]

Высокотемпературное окисление нагревающими газами усиливается также из-за попадания в дымовые газы пятиокиси ванадия УгОб. Эта последняя образуется в результате сгорания так называемого порфирина ванадия, очень сложного соединения, входящего в состав некоторых нефтей. Источником ванадия в нефтях являются соединения, входившие в состав крови низших морских организмов в результате разложения этих организмов образовались нефти ряда прибрежных районов. Хотя содержание ванадия в топливе не превышает сотых долей процента, его содержание в золе достигает 50%. Частицы такой золы переносятся газовым потоком на поверхность нагреваемых труб в печах. Возникающее в результате присутствия УгОз так называемое катастрофическое окисление при 700—800 °С протекает по линейному закону и сопровождается близким к равномерному разъеданием. Считается, что УгОз разрушает окалину, образуя с составляющими ее окислами легкоплавкие жидкотекучие соединения, таким образом уменьшается способность защитной пленки тормозить дальнейшее окисление металла [31, 32]. Считается также, что У2О5 облегчает перенос кислорода, диффундирующего через пленку продуктов коррозии к металлу. При этом проявляется инкубационный период, обусловленный временем, необходимым для реакции У2О5 с окисной пленкой.  [c.150]

В литературе отмечены многочисленные факты коррозионного разрушения под воздействием ртути аппаратуры из алюминиевых сплавов, свинца, адмиралтейского сплава, углеродистой стали и других материалов [20]. Амальгамирование меди, латуни, олова и других цветных металлов сопровождается изменением электродных потенциалов и возникновением контактной коррозии. При этом иногда обнаруживается коррозионное растрескивание сплавов этих и некоторых других металлов. Даже нержавеюшие стали в присутствие ртути и в особенности ее растворимых солей могут подвергаться значительной коррозии в таких жидкостях, к действию которых эти стали обычно устойчивы. Следует особенно внимательно наблюдать за тем, чтобы ртуть и ее соединения не разносились по аппаратуре и не загрязняли ее. Здесь уместно напомнить о том, что источником ртутных загрязнений в производстве может быть не только ртутный катализатор, но и разбитые термометры, манометры или другие приборы, вследствие чего ртуть иногда обнаруживается там, где ее, казалось бы, не должно быть. В аппаратуре ацетальдегидного производства ртутные загрязнения могут находиться во многих местах и в значительных количествах, поэтому при ремонте аппаратов и трубопроводов следует принимать особые меры предосторожности. Ртуть является сильным ядом, проникающим в человеческий организм через кожу и дыхательные органы. Кроме того, в присутствии азотной кислоты и окислов азота, находящихся в аппаратуре цеха регенерации контактного раствора, ртуть может образовывать взрывчатое соединение — гремучую ртуть. По этой причине, приступая к разборке и ремонту трубопроводов на установке окисления нитрозных газов, следует предварительно испытать небольшую пробу продуктов, отложившихся на стенках труб. Если лабораторная проба на удар дает воспламенение, что указывает на наличие гремучей ртути, то трубопроводы перед ремонтом следует хорошо промыть аммиачной водой.  [c.34]


После расплавления металла в печи образуется два слоя внизу — металл 1, вверху — шлак 2 (рис. 20). Дальнейший процесс плавки протекает под слоем шлака и окисление примесей идет за счет растворенной в металле закиси железа. Закись железа FeO в шлаке, соприкасаясь с печными газами, окисляется до FegOi- Магнитная окись, соприкасаясь с металлом, окисляет железо до FeO, которое растворяется в металле и окисляет примеси кремний, марганец, фосфор.  [c.52]

Чтобы понять механизм окисления, приходится изучать и по мере возможности предугадывать окислительные характеристики окисных слоев для всевозможных сочетаний металл — газ. Необходимо знать состав и структуру устойчивых соединений, образующихся при таком сочетании. Так как энергетическое состояние на поверхности раздела, равно как и на всякой поверхности вообще, отлично от энергетического состояния в толще материала, на подходящей поверхности могут образовываться металлические соединения, в обычных условиях неустойчивые в толще материала. Так, никель образует только один устойчивый окисел, а именно закись никеля N 6, но на поверхности окиси алюминия АЬОз возможно образование в значительном количестве и полуторной окиси никеля N 203 то же самое относится и к образованию двуокиси никеля N 02 на поверхности ТЮ2 [1]. В таких случаях структура образующихся окислов никеля псев доморфна структуре поверхности, на которой они образуются. Закись никеля N 0, которая, как известно, в нормальных условиях кристаллизуется только в решетке каменной соли, при образовании в виде слоя на поверхности никеля может приобрести ромбоэдрическую структуру [2]. Еще об одном экспериментальном факте, который можно увязать с влиянием поверхностной энергии, сообщает Гульбрансен [3]. Вюстит РеО, обычно неустойчивый при температурах ниже 570° С, образуется при окислении железа при этих температурах в виде тонкой пленки под окалиной, состоящей из окиси железа РегОз. Чем ниже температура образования такой пленки вюстита, тем меньше ее толщина, хотя пленку удавалось обнаруживать даже при 400° С. По уравнению  [c.12]

Плавку ведут скрап-процессом с наименьшим количеством чугуна, чтобы не вводить много кремния и углерода во избежание затягивания периода кипения. В процессе расплавления шихты, так же как в основном процессе, под действием дымовых газов окисляются железо, кремний и марганец. Окислы их образуют шлак в виде силикатов. Выгорание углерода из металла начинает происходить только за счет FeO, получающейся от разложения части силикатов при повышении температуры, и идет крайне медленно. Усиление кипения ведут при помощи железной руды и извести, забрасываемых небольшими порциями во избежание ошлакования кислой набойки пода основными окислами FeO и СаО, но и при этом темп окисления не, увеличивается в связи с тем, что большая часть FeO связывается с SIO2 и не участвует в окислении.  [c.59]

Окисление металлов кислородом воздуха особенно заметно в условиях высокотемпературной нефтепереработки. При высоких температурах скорость взаимодействия газа с металлом велика, поэтому там, где может возникнуть эта проблема, необходимо особенно тщательно подбирать металл для конструкций. Скиннер, Мейзон и Моран [10] описывают сопротивление различных сплавов этому виду коррозии и отмечают, что сопротивляемость Ре—N1—Сг-сплавов зависит в основном от содержания хрома, Однако при переменных температурах для коррозионного сопротивления более важным становится присутствие других компонентов сплава. Так, увеличение содержания никеля действует благоприятно, так как он уменьшает различие в термическом расширении между окислом и металлом и соответственно уменьшает напряжения на границе раздела металл — окалина [41]. Кремний и алюминий заметно увеличивают сопротивляемость окислению. Имеются подробные рекомендации для соответствующего выбора сплава.  [c.262]


Смотреть страницы где упоминается термин Окисление металла газами окислами : [c.167]    [c.6]    [c.406]    [c.183]    [c.213]    [c.16]    [c.41]    [c.271]    [c.102]    [c.33]    [c.34]    [c.135]    [c.101]   
Справочник сварщика (1975) -- [ c.12 ]



ПОИСК



Газы в металлах

Окисление

Окислы

Окислы металлов



© 2025 Mash-xxl.info Реклама на сайте