Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы — Динамика с одной степенью свободы — Колебания

Был рассмотрен наиболее простой случай (одно уравнение), соответствующий системе с одной степенью свободы или одночленному приближению при решении уравнений малых колебаний стержня с использованием принципа возможных перемещений. Для систем с несколькими степенями свободы выкладки становятся громоздкими. Более подробно решение систем линейных дифференциальных уравнений изложено в работах [6, 10, 14]. Дополнительные сведения о методах решения задач статистической динамики приведены в разделе, посвященном прикладным задачам.  [c.148]


На примерах релаксационных систем мы убедились в том, что для математического описания движения в реальных автоколебательных системах с одной степенью свободы необходимо пользоваться дифференциальными уравнениями второго порядка. Для систем, описываемых такими уравнениями, можно получить изображение соответствующего движения на фазовой плоскости. В некоторых случаях, когда уравнение нелинейно и не поддается аналитическому решению, построение фазового портрета движения в системе является существенной помощью в определении формы колебаний и динамики их установления. Следует отме-  [c.196]

Влияние диссипативных сил. На практике на колебания динамической системы влияют в большей или меньшей степени разного рода диссипативные силы. Для получения количественного представления об этом влиянии обычно в уравнения вводят силы трения, пропорциональные обобщенным скоростям. Этот метод знаком читателю, встречавшему его при рассмотрении случая вынужденных колебаний системы с одной степенью свободы ( Динамика", 94).  [c.242]

Не приводя изложения тех или иных гипотез и предложений, остановимся на основных вопросах, связанных с учетом рассеяния энергии при механических колебаниях в задачах динамики машинных агрегатов. В целях упрощения изложения будем в начале рассматривать системы с одной степенью свободы.  [c.160]

Когда в конструкцию намеренно вводится демпфирование, то несколько изменяются и отдельные узлы, поскольку при колебаниях конструкции ее части деформируются и в свою очередь воздействуют на присоединенные вязкоупругие элементы, рассеивающие энергию. Если для того, чтобы успешно решать задачи колебаний конструкции, используются демпфирующие материалы, то необходимо понимать не только поведение демпфирующих материалов, но также и связанную с этим задачу динамики конструкции. Для облегчения понимания часто оказывается эффективнее с точки зрения затрат исследовать математическую модель, дающую упрощенное представление о динамических характеристиках конструкции. Это могут быть математические модели самой разной сложности, начиная от системы с одной степенью свободы, соответствующей телу единичной массы, соединенному с пружиной, и кончая тонкими аналитическими представлениями о непрерывной системе с распределенными массой, жесткостью и демпфирующими свойствами, на которую действует распределенная возмущающая силовая функция. Степень сложности модели, используемой в процессе решения задачи, зависит не только от сложности конструкции, но и от времени и других ресурсов, которыми располагает инженер для решения задачи.  [c.136]


Динамика 1) теорема об изменении кинетической энергии 2) динамические реакции 3) движение центра масс 4) возможные перемещения (система двух тел) 5) теорема об изменении кинетического момента 6) колебания системы с одной степенью свободы 7) удар.  [c.26]

Построение отображения Пуанкаре — один из основных методов выявления хаотических колебаний в системах с небольшим числом степеней свободы (см. табл. 2.2). Напомним, что динамика вын> жденных колебаний механического осциллятора или ЬКС-цепи с одной степенью свободы может быть описана в трехмерном фа-  [c.136]

Одной из задач динамики старта летательных аппаратов является определение начальных возмущений ф (4) и ф которые получает тело при сходе с направляющей. В более общем случае точка приложения силы R не лежит в плоскости чертежа, она случайна (рис. 2.13), поэтому и возникающие случайные векторы fi и Ml имеют произвольные направления, т. е. имеют отличные от нуля проекции на все оси Xt, что приводит к колебаниям системы при старте как в плоскости чертежа, так и относительно этой плоскости. В упрощенном варианте система имеет две степени свободы. Рассматривая движение системы, можно получить два линейных уравнения относительно углов ф и v (угол v характеризует отклонение системы относительно плоскости чертежа) вида  [c.63]

Достаточно большой ряд работ по колебаниям пластинок и оболочек с конечными прогибами был открыт Э. И. Григолюком (1955). Основной путь исследования колебаний оболочек с конечной амплитудой — это сведение к системе с одной-двумя степенями свободы и дальнейшее применение результатов, разработанных в нелинейной механике. Этот прием господствует в настоящее время при решении сложнейших задач динамики  [c.248]

Для практического решения вопросов динамики колебаний упругих систем метод главных координат уже сравнительно давно применяли наши судостроители. П. Ф. Папкович [2] рассмотрел задачу о продольной качке корабля, сведя ее к двум дифференциальным уравнениям относительно главных координат. Акад. Ю. А. Шиманский [3] разработал метод динамического расчета систем, обладаюНгих несколькими степенями свободы, с применением главных координат, в котором системы с двумя, тремя и более степенями свободы приводятся к хорошо изученным системам с одной степенью свободы. Однако применение своего метода Ю. А. Шиманский считает весьма рациональным лишь для немногих простых случаев, так как при решении сложных систем возникают известные математические трудности.  [c.5]

Среди нелинейных задач статистической динамики особое место занимает исследование систем с прощелкиванием , т. е. таких систем, которые обладают несколькими устойчивыми положениями равновесия. Классическим примером являются стаци-онарные случайные колебания системы с одной степенью свободы при нелинейной восстанавливающей силе вида  [c.75]

Прежде чем покончить с общей теорией, желательно еще раз подчеркнуть первостепенное значение гармониче-ского типа колебаний в вопросах динамики. Мы видели, что оно является типичным для системы с одной степенью свободы, лишенной трения, или (в более общей форме) для системы, колеблющейся так, как если бы она обладала только одной степенью свободы, как в случае нормального колебания. Гармоническое колебание является также единственным типом вынужденных колебаний, в точности воспроизводимых, в большем или меньшем масштабе, во всех частях системы. Если сила совершенно произвольного характера действует на какую-либо точку системы, то колебания, вызванные ею в других частях системы, как правило, не похожи ни на эту силу, ни друг на друга только в случае периодической силы, зависящей от времени по гармоническому закону, вынужденные колебания в точности подобны друг другу и происходят син-фазно с действующей силой. Далее, оказывается, что при приближении к критической частоте вынуждающая сила создает вынужденные колебания с резко увеличенной амплитудой только в том случае, когда она санш подчиняется простому гармоническому закону или содержит соответственную гармоническую компоненту. Именно эти обстоятельства помогли Гельмгольцу обосновать свою теорию слуха, к которо мы обратимся впоследствии.  [c.74]


Если бы кто-то сказал, что через триста лет после публикации Prin ipia Ньютона в динамике будут сделаны новые открытия, его бы посчитали наивным или неумным. Тем не менее в последние десять лет во всех областях нелинейной динамики были обнаружены новые явления, главное из которых — хаотические колебания. Хаотические колебания — это возникновение неупорядоченных движений в совершенно детерминированных системах. Такие движения и раньше обнаруживались в механике жидкостей, ио недавно их заметили в несложных механических и электрических системах и даже в простых задачах с одной степенью свободы. Вместе с этими открытиями пришло понимание того, что нелинейные разностные и дифференциальные уравнения могут иметь офаниченные непериодические решения, которые ведут себя случайным образом, хотя в этих уравнениях нет случайных параметров. Это способствовало развитию новых математических идей, новых подходов к динамическим решениям, проникающих сейчас в лаборатории.  [c.6]

В целом динамика генерации многочастотных лазеров оказывается аналогичной динамике колебаний механической системы с несколькими степенями свободы. Число степеней свободы равно числу генерируемых частот (при одночастотном лазере одна степень свободы). В соответствии с этим на АЧХ ка к на каждой частоте, так и в их суммарном излучении в общем случае присутствует столько резонансов, сколько генерируется частот (продольных мод). Все резонансы разбиты на две группы в первой имеется лишь один (основной) резонанс, релаксационная частота которого равна релаксационной частоте одночас-  [c.79]

Как видно, современная техника все чаще ставит перед проектными организациями и конструкторскими бюро вопросы, решение которых относится к компетенции теории колебаний механических систем. Разумеется, втуз не может обеспечить подготовки, достаточной для решения динамических задач, встречающихся в практике ироектирования, однако он обязан научить правильному пониманию положений динамики и в частности теории, колебаний. Вследствие ограниченности объема часов, запланированных на динамику, студентам излагаются обычно только основные понятия элементарной теории колебаний системы с одной сте-пенью свободы. Современная же техника требует, чтобы студентов знакомили с более широким кругом вопросов теории колебаний. Целесообразно излагать действие произвольной периодической силы и импульсивных нагрузок, колебания систем с несколькими степенями свободы, основы теории виброизоляции, теории случайных колебаний и друг,ие вопросы.  [c.35]

В динамике обтцие теоремы для точки и системы рассматриваются совместно, как ото принято в МГТУ. Теория малых колебаний излагается для систем с одной и двумя степенями свободы без отдельного рассмотрения прямолинейных колебаний точки.  [c.3]

После Эйлера в течение XVIII в. теория устойчивости развивается в русле динамики в двух направлениях. Одним из них является изучение малых коле- 119 баний механической системы около положения равновесия. Этим вопросом занимались А. Клеро, Д. Бернулли, Ж. Даламбер, Ж. Лагранж. В Аналитической механике Лагранжа (1788) теория малых колебаний системы с конечным числом степеней свободы изложена в ее классической форме. Ответ на вопрос, устойчиво ли для данной системы положение равновесия, около которого она начинает колебаться, дает исследование корней алгебраического уравнения, определяющего частоты колебаний, соответствующих отдельным степеням свободы. (При этом, как известно, Лагранж высказал ошибочное утверждение, что при наличии кратных корней уравнения частот должны появляться вековые члены и устойчивости не будет.)  [c.119]

Новым в хаотической динамике стало открытие внутреннего порядка, который обещает сделать возможным предсказание определенных свойств зашумленных систем. Вероятно, наибольшие ожидания связаны с возможностью понять турбулентность в жидкостях, термогидродинамических и термохимических системах. Турбулентность — одна из немногих нерешенных проблем классической физики, и недавнее открытие детерминированных систем, совершающих хаотические колебания, вызвало большой оптимизм среди тех, кто занят загадками турбулентности. Но этот оптимизм уже умерен сложностями хаотической динамики в термогидродинамических системах. Впрочем, исследования хаотических явлений в системах с меньшим числом степеней свободы могут быстрее привести к результатам, существенным для несложных нелинейных механических устройств и нелинейных электрических цепей.  [c.16]

Помимо флаттера или колебаний на предельном цикле в модели на магнитной подвеске возможны статические бифуркации. Так, при определенных скоростях вертикальное состояние равновесия может смениться парой устойчивых наклонных состояний, показан-нь1Х на рис. 3.21. Эта неустойчивость известна в динамике летательных аппаратов как расхождение колебаний, она аналогична выпучиванию упругой колонны. В наших экспериментах хаотические колебания обнаруживались, когда система была подвержена расхождению колебаний (множественности состояний равновесия) и флаттеру одновременно. Флаттер обеспечивает перебрасывание модели с одной стороны направляющих на другую, как это происходит и в задаче с изогнутым стержнем, обсуждавшейся в гл. 2. Но математическая модель этой неустойчивости имеет две степени свободы. Динамические свойства боковых и продольных движений изучались с помощью киносъемки хаотических колебаний (рис. 3.22). ЗИ и колебания довольно сильны, и если бы они происходили яа настоящей машине, движущейся со скоростью 4(Ю—500 км/ч, она бы, вероятно. сошла с рельсов и разрушилась.  [c.102]


Смотреть страницы где упоминается термин Системы — Динамика с одной степенью свободы — Колебания : [c.514]    [c.14]    [c.7]    [c.689]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.334 , c.351 ]



ПОИСК



Динамика системы с одной степенью свободы. Свободные колебания

Колебания с одной степенью свободы

Колебания системы с одной степенью сво

Колебания системы с одной степенью свободы

С одной степенью свободы

Система с одной степенью свободы

Системы Динамика

Системы с одной степенью свободы Системы с одной степенью свободы

Степени свободы системы

Степень свободы



© 2025 Mash-xxl.info Реклама на сайте