Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкости высокотемпературные

Основной областью применения пористых электронагревателей является подогрев газов и жидкостей. Существенное преимущество их перед обычными омическими при высокотемпературном нагреве газа заключается в том, что при одинаковой предельной температуре тугоплавкого материала температура газа в пористом нагревателе достигает наибольшей величины вследствие высокой интенсивности объемного теплообмена.  [c.10]


Измерение тепловых потоков используется при доводке высокотемпературных машин и аппаратов и при исследовании их рабочих процессов, при определении тепловых потерь и исследовании условий теплообмена поверхностей с потоками газа или жидкости.  [c.271]

Точки, лежащие на р—Т-диаграмме по обе стороны от кривой равновесия фаз р = Ps T), соответствуют однородным состояниям тела, т. е. отдельным фазам верхние (лежащие над кривой или слева от нее) — низкотемпературной, а нижние (лежащие справа от кривой) — высокотемпературной фазе. Например, в случае равновесия жидкой и газообразной фаз (рис. 3.5) над кривой фазового равновесия расположена область жидкого состояния, а под кривой — область газообразного состояния. Кривая фазового равновесия представляет собой в данном случае кривую упругости насыщенного пара жидкости.  [c.207]

В гидроприводе должны применяться рабочие жидкости с показателями, соответствующими возможности эксплуатации машин на открытом воздухе. В гидросистеме допускается применение вязких высокотемпературных рабочих жидкостей. При этом резервуары и трубопроводы должны быть с теплоизоляцией, а также предусмотрена возможность равномерного нагрева жидкости, если время нагрева не влияет на превышение нормы подготовительного времени, определенного для работы  [c.141]

Пористые материалы находят большое применение в таких конструкциях, как высокотемпературные теплообменники, турбинные лопатки, реактивные сопла и т. д. На практике охлаждение пористых структур достигается нагнетанием жидкости или газа через капилляры твердого тела. Процесс теплообмена в таких пористых системах весьма сложен. При решении задачи предполагается, что вся передача теплоты внутри плоской пластины осуществляется за счет теплопроводности через твердую фазу и что температуры твердого тела и жидкости почти не отличаются друг от друга в любой точке пористой структуры. Эти предположения существенно упрощают решение задачи [Л. 205].  [c.62]

Качество покрытий на высокотемпературных материалах, полученных в результате взаимодействия жидкости с поверхностью твердого тела, определяется прежде всего степенью смачивания покрываемого материала и характером растекания жидкого металла по поверхности твердого тела. При этом решающее значение имеют движущие силы процесса растекания и связь исходной массы капли жидкого металла с конечной площадью растекания.  [c.10]


Полнота улавливания кислоты в приборе определяется интенсивностью охлаждения дымовых газов и исходным сопротивлением пористого фильтра. Интенсивность охлаждения дымовых газов в свою очередь определяется температурой газов перед прибором и температурой охлаждаемой жидкости. В зависимости от этих температур изменяется количество кислоты, конденсирующейся в объеме, и, следовательно, проскок паров кислоты через прибор. При отборе газов из высокотемпературной зоны газохода котла конденсация кислоты в объеме неизбежна, и поэтому для уменьшения проскока необходимо  [c.92]

Качество защитных покрытий на высокотемпературных материалах, получаемых в результате взаимодействия жидкости с поверхностью твердого тела, определяется характеристиками смачивания и растекания жидкого металла по этой поверхности. Особый  [c.137]

На рис. 30, е изображена схема индукционного нагрева металлического образца 1, прикрепленного к стойке 2 рабочей камеры, образованной керамическим корпусом сЗ образец находится в электрическом поле индуктора 4. Воздух и газы откачиваются из корпуса рабочей камеры. Для охлаждения керамического корпуса, особенно при длительном высокотемпературном нагреве образцов, служит наружный сосуд из плексигласа, снабжаемый штуцерами для подачи и отвода охлаждающей жидкости, пропускаемой по зазору между корпусом 3 и сосудом. Нагревательный индуктор может иметь форму многовитковой цилиндрической спирали.  [c.76]

В предлагаемой серии термин коррозия используется в очень широком смысле, включающем не только разрушение металла в водных средах, но и явление, которое обычно называют высокотемпературным окислением. Более того, в дальнейшем в данной серии планируется рассмотрение коррозии всех твердых веществ в разнообразных средах. В современной технике наряду с металлами и сплавами используются стекла, вещества с ионным строением, полимеры и композиты всех перечисленных материалов. Представляющие практический интерес коррозионные среды включают жидкие металлы, широкую номенклатуру газов, неводные электролиты и другие неводные жидкости. Комплексные процессы разрушения материалов, основанные на явлениях износа, кавитации, фреттинга, рассматриваются с учетом последних достижений науки о коррозии. Ученые смежных областей науки в частности физики, металлофизики, физико-химики и электроники, могут оказать существенное влияние на решение многих коррозионных проблем. Можно надеяться, что публикуемые обзоры позво-  [c.7]

Из-за сложностей и трудностей высокотемпературных изменений адсорбции было изучено содержание бора в пробах шлама, взятых из высокотемпературных систем при охлаждении и фильтрации. Загрязнение таких проб бором из жидкости корректировалось двумя различными путями  [c.173]

ВНИИ НН-246. Однородная пластичная мазь, продукт загущения кремнийорганической жидкости пигментом, антифрикционная высокотемпературная высоковакуумная смазка (ГОСТ 18852—72). Предназначена для смазывания подшипников качения и зубчатых передач, работающих в интервале температур от —60 до +250° С, в вакууме 10 мм рт. ст. Вязкость, определяемая капиллярным вискозиметром при —40° С и среднем градиенте скорости деформации  [c.457]

Цианистый водород и сероуглерод могут содержаться только в горючих газах, полученных путем высокотемпературной перегонки каменного угля. Оба они представляют собой легко испаряющиеся жидкости, пары которых, особенно цианистого водорода, очень ядовиты.  [c.27]

При интенсивном теплообмене с высокотемпературной средой высокое термическое сопротивление слоя термоизоляции приводит к росту температуры поверхности теплообмена и опасности теплового разрушения термоизолятора. Использование в этом случае пористого термоизолятора, через поры которого навстречу тепловому потоку подается охлаждающий газ или жидкость, часто позволяет решить проблему тепловой 76  [c.76]

Отношение R /(R ) = (exp [m h] - l)/(m /i) неограниченно возрастает при увеличении параметра т. С ростом т возрастает также плотность воспринимаемого на поверхности теплообмена теплового потока Кроме того, выход жидкости или газа в пограничный слой на этой поверхности вызывает перестройку профилей скорости, температуры и концентрации компонентов высокотемпературной среды, что снижает интенсивность конвективного теплообмена. Рост параметра т обычно ограничивается допустимым значением расхода жидкости т. При ограниченном значении т дополнительного эффекта можно добиться выбором такого режима, когда испарение жидкости с  [c.78]


Однако оба предела не могут быть отнесены к одному и тому же материалу. Материалы, способные работать при очень низких температурах, не подходят для высокотемпературных условий, и наоборот. Существует одно исключение — использование силиконовых материалов в среде сухого воздуха. Некоторые силиконовые материалы будут сохранять работоспособность в диапазоне температур от —90 до +260° С. В динамических уплотнениях и силиконовые материалы, подвергаясь воздействию различных синтетических гидравлических и смазочных жидкостей, могут применяться или в диапазоне рабочих температур от —55 до + 150° С или от —30 до +230° С.  [c.258]

Формула, обобщающая данные, использованные при построении зависимости (7.1), и ряд других данных (в том числе значения а к кипящим фреонам, криогенным жидкостям, высокотемпературным органическим теплоносителям и др.), получена Н. Г. Стюши-ным [181]. Эта формула имеет вид  [c.205]

Перенос тепла излучением может, разумеется, происходить и в противоположном направлении, повышая температуру чувствительного элемента, если на элемент попадает излучение какого-либо внешнего источника. Такая ситуация возникает, например, при измерении температуры прозрачной жидкости в комнате, освещаемой лампами накаливания. Следует помнить, что тепловой эффект измерительного тока в 1 мА эквивалентен выделению на чувствительном элементе мощности в 25 мкВт. Высокотемпературный источник теплового излучения, например лампа накаливания в 150 Вт на расстоянии 3 м от термометра, вполне может создавать в направлении термометра поток излучения до 20 Вт на стерадиан. Если между термометром и источником теплового излучения нет поглощающей среды, на термометр может попадать до 9 мкВт теплового излучения, что для некоторых типов термометров будет эквивалентно нагреванию на 1 мК. Выход из положения в этом случае состоит, например, в помещении термометра в непрозрачную трубку, заполненную легким маслом для улучшения теплового контакта со средой. Необходимо следить за тем, чтобы между применяемыми здесь материалами не  [c.213]

Детали, закаленные на мартенсит, упрочняют обработкой на белый слой точением твердосплавными резцами с большим отрицательным передним углом (до 45°) без смазочно-охлаждающих жидкостей при скорости резания 60 — 80 м/мин. Поверхностный слой при этом подвергается своего рода термомеханической обработке, представляющей собой совмещение процессов высокотемпературной деформации и вторичной закалки. На поверхности образуется светлая нетравящаяся корка толщиной 0,1—0,2 мм, обладающая высокой твердостью НУ 1000—1300 При исходной твердости материала НУ 600—700) и состоящая из мелкозернистого (размер зерна 0,05—0,1 мкм) тонкоигольчатого мартенсита втюричной закалки с высокодисперсными карбидными включениями. В зоне белого слоя возникают чрезвычайно высокие сжимающие напряжения (до 500 кгс/мм ), обусловливающие резкое повыщение циклической прочности. Усталостно-коррозионная стойкость повышается примерно в 10 раз п6 сравнению с исходной. Хорошие результаты получаются только йрн условии сплошности белого слоя. В противном случае на участках разрыва слоя возникают скачки напряжений, снижаюНтие циклическую прочность. Чистовую обработку белого слоя производят микрошлифованием, полированием и суперфинишированием.  [c.323]

Так, это может иметь место в области вблизи критической точки жидкость — газ. Ситуация с нарушением условия (86,2) может быть также имитирована на ударной адиабате для среды, допускающей фазовый переход fB результате чего на адиабате возникает излом). См. об этом в книге Зельдович Я. Б., Райэер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. — Изд. 2-е. — М. Наука, 1966, гл. 1, 19 гл. XI, 20.  [c.461]

Рассмотрим некоторые особенности впрыска жидкости в сверхзвуковую часть сопла и ее взаимодействие с газовым потоком. При впрыске жидкости в высокотемпературный поток происходят процессы каплеобразования и нагрева жидкости с последующим ее испарением. Исследования показывают, что максимальный диаметр капель не превышает величины 0,06 у (где Л] — диаметр отверстия для впрыска). Под воздействием сильно нагретых продуктов сгорания наблюдается уменьшение размеров капель, что обусловлено испарением и дополнительным дроблением. При этом испарение происходит настолько быстро, что впрыскиваемую струю уже непосредственно за отверстием можно считать не жидкой, а газообразной. При вспрыске жидкости, вступающей в химические реакции с продуктами сгорания топлива двигательной установки, необходимо учитывать влияние этих реакций на каплеобразование и испарение.  [c.343]

При кипении обычных (высокотемпературных) жидкостей работЬ-, способными центрами парообразования являются лишь те впадины и углубления на поверхности теплообмена, которые способны удерживать, пар или газ. Крупные впадины легко заполняются жидкостью и выключаются из работы как активные центры парообразования. Поэтому существует граница шереховатости, за пределами которой дальнейшее загрубление поверхности не приводит к изменению интенсивности теплоотдачи. В [Л. 32] установлено, что это наблюдается при обработке поверхности теплообмена выше 6—7-го класса чистоты. Теплофизиче-  [c.305]

Известно, что на границе жидкого и твердого металлов существует контактное электрическое сопротивление Оно зависит от электрического сопротивления собственно контакта определяющегося степенью смачиваемости твердой поверхности жидкостью и дополнительных сопротивлений, вносимых промежуточными слоями (твердыми — окисленными, осажденными из газовой фазы, выпавшими из расплава газообразными - адсорбированными из расплава). Экспериментально установлено, что при полной смачиваемости стенки = 0. О порядке значений дополнительных сопротивлений можно судить по экспериментальным данным, приведенным в ряде работ при примерно однородной температуре контактной зоны [19]. Властности, для контакта электрода из нержавеющей стали с различными легкоплавкими расплавами в [16] получено сопротивление естественных оксидных пленок приблизительно 10 Ом-м и искусственно созданных толстых оксидных пленок 10 -10 Ом-м . Сопротивление, обусловленное наличием пленок физической адсорбции, составляет при комнатной температуре 10 —10 Ом-м [16]. По имеющимся в литературе данным различных авторов, полученным экспериментально при комнатной температуре, суммарное сопротивление контакта электрода из меди с легкоплавкими расплавами имеет порядок 10 — 10 Ом-м , что близко к даштым [16]. Известно также, что сопротивление, вносимое рыхлыми осажденными слоями, а также возникающее в случае химического взаимодействия контактирующих сред, может принимать любые, неограниченно большие значения [19]. Прямые данные по контакту твердых металлов с высокотемпературными расплавами в литературе отсутствуют.  [c.19]


Замещенные ароматические сложные эфиры фосфорной кислоты серьезно не рассматривались в качестве высокотемпературных жидкостей из-за плохих вязкостно-температурных характеристик и коррозионной агрессивности при высоких температурах [30]. Однако они использовались при 5%-ной и более концентрации в качестве противоизносных присадок в смазочных материалах военной спецификации для газовых турбин. Было показано, что все рассмотренные фосфаты чувствительны к -у-облуче-нию. При облучении значительно увеличиваются кислотное и- коксовое числа. При этом вязкость увеличивалась на 30—50%. Эти результаты были подтверждены работами Стенфордского научно-исследовательского института [17] при облучении электронами трикрезилфосфата наблюдались следы метана и толуена с небольшим количеством одноосновных кислот и довольно значительным количеством двухосновных кислот.  [c.123]

Фирмой Силиконз Продактс Департамент оф Дженерал Электрик (США) разработаны высокотемпературные силиконовые жидкости для гидравлических систем под названием Версилуб , которые обладают довольно хорошей смазывающей способностью и отличной вязкостно-температурной характеристикой, в особенности жидкости Версилуб F-50 и SF-81. В табл. 26 приведены основные свойства этих жидкостей.  [c.48]

Технология воды, однако, не ограничена описанием нежелательных свойств воды. Она также включает использование ее свойств, чтобы достигнуть улучшения в конструкциях реакторов и повышения их эффективности, например использование растворов химических поглотителей нейтронов и смесей легкой и тяжелой воды для регулирования реактивности в энергетических реакторах с водой под давлением использование воды как газа или суперкритической жидкости в высокотемпературных реакторах. Основные принципы технологии водного теплоносителя применимы ко всем типам водяных реакторов промышленным, для испытаний и исследований, военным (военно-морским) и электростанциям. Каждой из этих областей применения свой-  [c.7]

Повышение температуры газа перед турбиной приведет к еще большему КПД газотурбинных установок замкнутого цикла с контактными регенераторами. Могут быть и другие схемы и типы ЗГТУ. В настоящем параграфе были рассмотрены ЗГТУ с высококипящими жидкими промежуточными теплоносителями, когда можно было не учитывать их испарения и конденсации при непосредственном контакте с газами в регенераторах ЗГТУ. Необходимо исследовать не только такие установки, но и ЗГТУ с низкокипящими жидкими промежуточными теплоносителями, так как испарение теплоносителей и насыщение газа парами жидкости в высокотемпературном регенераторе ведет к увеличению расхода рабочего тела в турбине и должно способствовать увеличению совершаемой полезной работы и КПД установки в целом.  [c.161]

Способом повышения температуры греющего агента без увеличения давления в полостях нагревателя является перевод первого корпуса аппарата на обогрев высокотемпературными жидкостями, температура которых при атмосферном давлении превышает 250° С, в то время как водяной пар при такой температуре должен был бы иметь в полостях аппарата давление более 4 MnjM и металлоемкость аппарата оказалась бы недопустимо большой.  [c.265]

Представляются перспективными в качестве высокотемпературных рабочих тел и теплоносителей некоторые элементоорганические соединения — промежуточный класс между чисто органическими и неорганическими веществами, среди которых в настоящее время наиболее изучены кремнийорганические полимерные соединения — полиорганосилоксаны. Ожидается создание по-лиорганосилоксановых жидкостей, обладающих ценными техническими свойствами тепло- и морозостойкостью гидрофобностью диэлектрическими свойствами стабильностью в широком диапазоне температур.  [c.57]


Смотреть страницы где упоминается термин Жидкости высокотемпературные : [c.676]    [c.685]    [c.55]    [c.128]    [c.275]    [c.224]    [c.134]    [c.136]    [c.180]    [c.23]    [c.70]    [c.447]    [c.460]    [c.460]    [c.461]    [c.590]    [c.225]    [c.70]    [c.54]    [c.314]    [c.383]   
Машиностроительная гидравлика Справочное пособие (1963) -- [ c.0 ]



ПОИСК



Высокотемпературная ТЦО



© 2025 Mash-xxl.info Реклама на сайте