Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трубы Напряжения температурные

Указанное условие также не выполняется при работе металла в предварительно-напряженном состоянии (например, из-за внутреннего давления в трубе, стационарного температурного поля и др.), а также при существовании разнотипных знакопостоянных напряжений.  [c.237]

Растопка котла на мазуте иногда сопровождается сажеобразованием. Частицы сажи, оседающие на работающих под давлением поверхностях, как правило, потом догорают, не вызывая никаких неприятностей. Осаждение сажи на трубах рекуперативного или набивке регенеративного воздухоподогревателя крайне опасно, так как оно может привести к пожарам с большим материальным ущербом и длительным выводам котла из строя. Неполное сгорание бывает следствием совокупности многих причин. Растопка начинается в холодной топке с холодным воздухом и весьма малыми тепловыми напряжениями. Температурный уровень при этом понижен, что затрудняет зажигание и тормозит догорание не прореагировавших в ядре факела частиц топлива. Нежелательность работать с номинальной мощностью горелок по условиям температурного режима пароперегревателя ухудшает смесеобразование. Все сказанное заставляет уделять максимум внимания качеству форсунок и подогреву мазута, который должен соответствовать вязкости не выше 2,5° ВУ, а если возможно — и ниже. Не менее важно достаточно высокое давление распыливания мазута. Растопку желательно вести на относительно легких мазутах М-20 или М-40, так как они менее склонны к сажеобразованию, легче воспламеняются и требуют более низкого подогрева. Имеются сведения, что за рубежом на электростанциях, сжигающих тяжелый мазут, применяют улучшенное растопочное топливо, выделяя для него специальную систему хранения и подачи. В отечественной практике такого опыта еще нет.  [c.310]


Для восприятия температурных удлинений и разгрузки труб от температурных напряжений на теплосети устанавливают гнутые, сальниковые или линзовые компенсаторы.  [c.423]

Процесс энергоразделения неотделим от процесса диссипации части механической энергии в тепло, возникающего из-за совершения работы по преодолению турбулентных напряжений. Вследствие энергетической изолированности течения в предположении незначительности абсолютной величины гидравлических потерь преодоление потоком турбулентного трения однозначно связано со снижением давления в потоке. Это снижение давления, трактуемое как потеря энергии, вызывает снижение эффекта температурного разделения в вихревой трубе по отношению к эффекту, который возникал бы в случае идеального течения без трения. Поэтому термодинамическая эффективность процесса энергоразделения в вихревой трубе может быть оценена внутренним адиабатным КПД  [c.182]

Стальная труба с внутренним диаметром 2ri=4 см и наружным 2 2 = 8 см нагревается так, что температура внутренней поверхности Tj = 300°С, а наружной Tj = 200°С. Определим температурные напряжения в трубе, считая, что по толщине стенки температура изменяется по линейному закону. При расчете примем Е = 2 10 кгс/см р, = 0,3 а = 125 10 . Превышение температуры внутренней поверхности над наружной T = Ti — Т = = 100°С.  [c.459]

Формулой (17.38) можно пользоваться также для определения температурных напряжений в различных оболочках (в стенках и днищах котлов, в стенках труб и т. д.).  [c.508]

Большое распространение получили теплообменники жесткой конструкции, ТА с компенсаторами температурных напряжений — и—образными трубками. Кроме того, в нефтяной и газовой промышленности широкое применение получили ТА типа труба в трубе .  [c.116]

Большое распространение получили теплообменные аппараты жесткой конструкции, теплообменники с компенсаторами температурных напряжений (с линзовыми компенсаторами на корпусе, с плавающей головкой), с и-образными трубками. Кроме того, в нефтяной и газовой промышленности широкое применение получили теплообменные аппараты типа труба в трубе (рис. 22.2).  [c.331]

В анизотропных телах положение осложняется в тех случаях, когда анизотропия криволинейна. Например, цилиндр, изготовленный из стеклопластика или углепластика путем намотки, ортотропен, но упругие свойства его обладают цилиндрической симметрией, в цилиндрических координатах модули упругости и коэффициенты температурного расширения постоянны. Но при переходе к декартовым координатам тензоры Ei и а будут уже не постоянными, а функциями координат Ха, поэтому даже равномерное температурное ноле вызовет напряжения. Эта задача легко решается методом, совершенно подобным тому, который был применен в 8.12 для трубы из изотропного материала. Присваивая радиальному направлению индекс единицы, мы запишем уравнение упругости в форме (10.6.4). Теперь уравнение для функции напряжений оказывается следующим  [c.385]


Подводимая мощность регулируется на стороне высокого напряжения лабораторным автотрансформатором. Регулирование мощности позволяет изменять в опытах температурный напор между поверхностью трубы и окружающим воздухом в щироких пределах. Мощность определяется по току и электрическому сопротивлению материала опытной трубы (нержавеющей стали). Электрическое сопротивление нержавеющей стали существенно изменяется с температурой. Для его определения проводятся предварительные опыты при различных температурах. Результаты измерений представлены. на рис. 4.7.  [c.147]

Дренажи, продувки и воздушники устанавливают на горизонтальных участках паропроводов. Здесь может накапливаться конденсат (например, при прогреве трубопроводов или при локальном охлаждении, нарушении изоляции и т. д.), что может вызвать температурную неравномерность по периметру и толщине труб, а следовательно, дополнительные напряжения. Кроме того, при останове оборудования часто возникает необходимость полного удаления рабочей среды из трубопроводов. В соответствии с установленными правилами горизонтальные участки трубопроводов следует прокладывать с уклоном не менее 0,002, а в нижних точках каждого отключаемого задвижками участка предусматривать дренаж (на трубопроводах с водой — системы опорожнения), т. е. устанавливать сливной штуцер с арматурой. В ряде случаев дренаж выполняют и на гофрах компенсаторов.  [c.121]

Рассмотрим круглую цилиндрическую трубу из упругого материала, подчиняющегося закону Гука. Требуется найти напряжения и деформации в стенках трубы при условии, что она находится под действием внутреннего Ра и внешнего рь давлений при постоянной температуре Т = То, соответствующей отсутствию температурных напряжений при отсутствии деформаций, которую назовем равновесной .  [c.332]

В ряде современных машин разрушение деталей может происходить в результате большой температурной и силовой напряженности, в которых они работают. Так, например, в реактивных двигателях самолетов детали, образующие горячий тракт,. — жаровые трубы, кожухи камер сгорания, форсажные камеры и др. — работают в условиях высоких температур, частых изменений теплонапряженности и действия вибрационных нагрузок, вызывающих переменные напряжения. На рис. 20, е показана трещина в стенке кожуха камеры сгорания реактивного двигателя, когда разрушению предшествовал прогар материала, газовая коррозия и абразивный износ стенок, а также накопление усталостных разрушений. Таким образом, разрушение материала, как проявление данного процесса старения, может являться следствием комплекса разнообразных необратимых процессов.  [c.84]

В течение определенного времени на заданном расстоянии от наружной поверхности трубы термические напряжения достигают максимальных значений. Наибольшие термические напряжения при этом не соответствуют моменту достижения максимального температурного перепада. Так, например, если температурный перепад на наружной поверхности труб достигает своего максимального значения через 0,3 с (рис. 5.15), то термические напряжения имеют наибольшие значения в момент времени 0,18 с (рис. 5.16). После достижения максимума термические напряжения снижаются, несмотря на продолжающееся увеличение перепада температуры на наружной поверхности трубы. С увеличением расстояния от наружной поверхности трубы снижаются максимальные термические напряжения с одновременным уменьшением времени до их наступления.  [c.213]

Термическая усталость часто проявляется в деталях поршневых дизельных двигателей, в колесах железнодорожных локомотивов, в теплообменниках, штампах, валках прокатных станов, на тормозных барабанах, в паровых котлах, в электроосветительной аппаратуре и прочих деталях и узлах, работающих в условиях нестационарных температурных режимов, главным образом при запусках и остановках. В качестве типичных деталей, испытывающих в работе переменные напряжения вследствие теплосмен, можно привести также жаровые трубы камер сгорания, сопловые лопатки и охлаждаемые рабочие лопатки реактивных авиадвигателей сплошным неохлаждаемым рабочим лопаткам это явление менее свойственно. Трещины на сопловых лопатках возникают преимущественно на входных и выходных кромках, которые нагреваются и охлаждаются с наибольшей скоростью на выходных кромках обычно возникает 70% трещин, на входных — около 20%, на корыте и спинке — 10% [12].  [c.163]


Выравнивание температур газа и грунта позволяет практически исключить влияние газопровода на естественный тепловой и гидравлический режим местности, повысить надежность линейной части трубопровода и увеличить его пропускную способность. В настоящее время ставится вопрос о необходимости круглогодичного охлаждения газа до температуры грунта по всей трассе газопровода, в том числе и за пределами северных районов. Целесообразность такого предложения обосновывается стабилизацией теплового режима работы газопровода в годовом цикле уменьшением линейных деформаций, а следовательно, и температурных напряжений, возникающих в металле труб снижением интенсивности коррозионных процессов. Это должно привести к повышению надежности линейной части, а также к некоторому увеличению подачи товарного газа. Положительные эффекты перекрывают дополнительные затраты, связанные с сооружением холодильных установок на каждой компрессорной станции.  [c.70]

Вообще говоря, в блоках с неравномерным распределением температуры и нейтронных потоков напряжения складываются из температурных и радиационных, однако температурные напряжения (если они сразу не приводят к разрушению) полностью релаксируют при флюенсе 2- lO i нейтр./см , вызывая лишь незначительные остаточные деформации. Поскольку в момент разрушения блоков флюенс составил нейтр./см , то могли действовать только радиационные напряжения, вызванные неравномерностью усадки, и напряжения, обусловленные взаимодействием с циркониевой канальной трубой.  [c.259]

Сложнее обстоит дело с бронированными трубопроводами. Любое компенсационное устройство воспринимает изменения длины трубопровода в пределах температурного расширения бронирующего материала (стали, стеклопластика и др.). Избыточное изменение длины фторопласта вызывает напряжения в отрезках трубы, вследствие чего происходят сдвиги фторопласта относительно брони и изгибы отбортовки. При длительной эксплуатации бронированных трубопроводов в большом диапазоне температур наблюдаются случаи появления трещин на отбортовке. Однако такие явления не часты, видимо, потому, что значительная часть температурного расширения полимера компенсируется его хорошей податливостью.  [c.148]

Температурное поле (2.72) вызывает в трубе тепловые напряжения [120], выражения для которых могут быть приведе-шы к виду  [c.82]

Разработана конструкция ЭП без металлических труб, в которой изолятор из электротехнического фарфора забетонирован непосредственно в стене защитной оболочки (рис. 1.6, е) [12]. Естественно, что изолятор в таких условиях длительное время должен воспринимать механические нагрузки и температурные воздействия. Такая конструкция целесообразна для тех зон оболочки, где не возникает растягивающих усилий. В жестких конструкциях проходок исключается прострел ионизирующего излучения, прогрев пятна , концентрация напряжений в оболочке и возникновение токов Фуко в узлах ЭП. Для увеличения сцепления изолятора с бетоном его наружная поверхность должна выполняться рифленой.  [c.19]

Нагреватели стенда можно выполнить в виде системы байпасных трубопроводов, обогреваемых электрическим током низкого напряжения. Такая система проста в исполнении и обслуживании и позволяет доступными средствами автоматически поддерживать температурный режим за счет регулирования мощности путем изменения напряжения, подаваемого на обогреваемые участки трубопроводов. Следует только иметь в виду, что при прекращении циркуляции воды через обогреваемый трубопровод происходит быстрый разогрев трубы. Для предотвращения перегрева предусматривается автоматическое отключение подачи напряжения на обогреваемый участок трубопровода во время остановки ГЦН.  [c.247]

Сборку парогенератора производят с предварительным холодным натягом корпуса. Корпус нагревают и после его удлинения примерно на 3 мм приваривают трубы к трубным доскам.В процессе работы парогенератора на заданном температурном режиме охлаждение труб водой и разогрев корпуса натрием приводят к тепловому удлинению корпуса и ликвидации холодного натяга, что обеспечивает компенсацию температурных расширений и снятие дополнительных напряжений в конструкции.  [c.121]

Температурные напряжения, вызванные градиентом температуры по толщине стенки трубы из пластичной стали, не приводят к разрушению. Только при явно циклическом характере изменения температурных напряжений с числом циклов, намного превышающим обычное число пусков и остановов котла за весь срок службы, может происходить разрушение труб котла от усталости. Поэтому температурные напряжения не учитываются при расчете труб котла на прочность. Там, где по условиям работы неизбежны циклические изменения температурных напряжений (в частности, в трубах НРЧ), ограничивают толщину стенки труб и тем самым ограничивают тепловые напряжения.  [c.380]

Следует отметить, что в роторе практически любого типа частота вращения изменяется в достаточно широком диапазоне, а это означает, что создаваемые при этом окружные скорости могут существенно раздичаться. Так, например, для ротора ГТД при небольшой частоте его вращения п значение окружной скорости может быть сопоставимо со значением осевой составляющей скорости истечения из отверстия диафрагмы и течения в камере энергоразделения. В то же время на крейсерских режимах и на максимальных частота вращения ротора такова, что в зависимости от радиуса расположения вихревого энергоразделителя R окружная составляющая скорости U, создаваемая вторичными инерциальными силами, может достигать критической. Очевидно, что характер влияния во многом будет определяться взаимным расположением векторов напряженностей первичного и вторичного инерциальных полей. Исследования, проведенные в работе [212] показали, что у вихревой трубы, для которой вторичное поле инерциальных сил создавалось ее вращением относительно оси, расположенной перпендикулярно к оси симметрии камеры энергоразделения и размещенной в области соплового ввода, с ростом частоты вращения трубы п температурные эффе-  [c.379]


На рис. 3 показаны эпюры осевых и кольцевых напряжений на наружной и внутренней поверхности среднего слоя трубы с кольцевыми гофрами от нагрева на 60 С, полученные при расчете трубы по программам, разработанным в Институте механики АН УССР. В качестве примера рассмотрен гофр высотой 18 мм, шириной 200 мм с шагом 800 мм. Согласно расчету, компенсирующая способность такой трубы 1,06 мм на 1 м длины. Максимально допустимый температурный перепад для стали с аг = 420 МПа составляет 88 °С. Осевая жесткость рассматриваемой трубы, напряжения сжатия в трубе от нагрева и усилия, действующие на опоры и задвижки, уменьшатся в три раза по сравнению с обычной.  [c.237]

Установка [Л. 4] представляла собой горизонтальный парогенератор без отбора пара на сторону, который состоял из барабана, конденсатора-холодильника, соединительных труб, арматуры и экспериментальной трубы. Последняя была из стали 1Х18Н9Т с наружным диаметром 5—7 мм, в барабане она располагалась горизонтально. Обогрев рабочего участка осуществлялся при помощи непосредственного включения его в цепь тока низкого напряжения. Для каждой рабочей трубы снимались температурные зависимости омического сопротивления и коэффициента теплопроводности.  [c.76]

Цар и Гедьен описывают хрупкое разрушение большой сварной дымовой трубы диаметром более 4 и высотой 65 м, которое произошло в январе 1959 г. после 20 лет службы трубы. Напряжения в материале трубы определялись в основном температурным градиентом в стенке и нагрузками от ветрового давления. Толщина стенки в нижней части трубы, где произошло разрушение, составляла 16 ММ. Эта часть трубы была изготовлена из стали с содержанием 0,24% С, пределом прочности 45 кПмм", пределом текучести 26 кПмм - и удлинением при разрыве 26%.  [c.291]

Для уменьшения прогрева стенок баков горячими газами внутри баков могут также устанавливаться теплозащитные экраны. В тех случаях, когда трубопровод из переднего бака проходит через задний бак с криогенным компонентом топлива, для того чтобы не допустить замерзания или переохлаждения проходящего через второй бак компонента, этот трубопровод теплоизолируется и пропускается внутри туннельной трубы, устанавливаемой между пере,аним и задним днищами бака с криогенными компонентами. Для того чтобы при температурных расширениях труба не создавала дополнительных напряжений в конструкции бака, па трубе делаются температурные компенсаторы (в виде зигов), а крепится труба к одному из днищ жестко, а к другому — с помощью сильфона.  [c.141]

Температурные напряжения в длинном круговом цилиндре. Рассмотрим стационарное тепловое состояние цилиндра с осесимметричным распределением температуры Т, не зависящим от координаты х = г воспользуемся полярными цилиндрическими координатами г, 0, 2, совмещая ось г с осью цилиндра. Предположим вначале, что торцы цилиндрической трубы с внутренним радиусом и наружным радиусом закреплены таким образом, что е = О, т. е. рассматриваем задачу плоской деформации. В этом случае отличныын от нуля будут три компоненты тензора напряжений Огт, О00 и зависящие только от координаты г.  [c.283]

Преимущественное разрущение гнутых элементов паропере-гревательных труб происходит в том случае, когда прямые трубы и гибы работают в одинаковых температурных условиях. Это обычно имеет место в необогреваемой зоне пароперегревателя. В этом случае разрушение гибов пароперегревателей происходит аналогично разрушению гибов паропроводов. В обогреваемой зоне в связи со значительными температурными разверка-ми поврежденность, вызванная ползучестью, в основном определяется зонами с максимальной температурой. Поэтому поврежденность прямых труб пароперегревателя может преобладать над поврежденностью гибов. Следует отметить, что напряжения в гибах пароперегревателей близки к таковым для прямых труб.  [c.25]

Помимо статических напряжений (радиационных и вызванных взаимодействием с канальной трубой) на поведение графитовых блоков могли- оказать воздействие циклические напряжения, связанные с циклированием температуры, вызванным остановками реактора. Качественно это влияние можно представить следующим образом. Поскольку температурные напряжения в блоках полностью релаксируют, снятие градиента температуры в материале при остановках реактора эквивалентно появлению того же градиента температуры, но с противоположным знаком. Напряжения, возникающие при этом, уже не смогут релаксиро-вать из-за низкой температуры и отсутствия облучения. Так как внутренняя поверхность блока имеет температуру облучения ниже температуры наружных областей, ее тепловое расширение будет меньше и при остывании блока во внутренних областях возникнут сжимающие напряжения, частично компенсирующие растягивающие радиационные напряжения, которые при тепло-сменах остаются практически неизменными. Следовательно, циклические нагрузки в результате остановок реактора также не смогли стать причиной образования трещин в блоках графитовой колонны.  [c.259]

Условия возникновения односторонней деформации при действии рассмотренного температурного поля определяются главным образом температурными градиентами в осевом яаправле-кии, влияние градиента по толщине для тонкостенных оболочек невелико. iB этом можно убедиться, рассмотрев соответствующее распределение напряжений (6.58) совместно с выражением (7.9). С другой стороны, в толстостенных трубах и сплошных цилиндрах формоизменение возможно и при циклическом воздействии нестационарных температурных полей, не изменяющихся вдоль образующей [53, 60].  [c.224]

С учетом важности температурной инфор- 7 мации для решения вопросов оценки напряженного состояния, прочности и работоспособности деталей узла торможения в настоящей работе рас схема подвижного (верхнего) корпуса бу-сматривается темпера- рового ключа АКБ-ЗМ 1 — корпус 2 —челюсте-турная задача на при- держатель 5 — упор 4— захват ( челюсть ) 5 — мере узла торможения ролик 6—шпилька крепления вкладышей 7 — бурового ключа АКБ- вкладыш S —сухарь Р—труба бурильной ко-ЗМ (рис. 2). Постоян- лонны. ство угла заклинивания в процессе торможения и минимальная его зависимость от точности изготовления и степени изношенности деталей в эксплуатации обеспечиваются [5] тем, что контактная поверхность вкладыша 7 представляет собой участок эксцентрично расположенной окружности.  [c.165]

Излагаются результаты исследования авторами гидродинамики и теплообмена при турбулентном и ламинарном течении теплоносителей в каналах и моделях активных зон реакторов в круглых трубах, прямоугольных каналах, кольцевых зазорах и др. Обращено внимание на гидродинамические и тепловые процессы в неста-билизованных зонах, на влияние тепловыделения дистанциони-рующих устройств, обечаек реактора и пр. Рассмотрены весьма важные вопросы теплового моделирования сложных каналов, позволяющие оценить области применения тех или иных экспериментальных данных для расчета конкретных случаев. Приводятся примеры расчета гидравлических сопротивлений, касательных напряжений, полей скоростей и температурных полей.  [c.2]

Трубы под воздействием температуры теплоносителя (ло рячей воды или пара) удлиняются. При повышении температуры на 100° С удлинение стальных труб составляет 1,2 мм на каждый метр. Так, например, если взять участок теплопровода длиной 100 м, то удлинение его при повышении температуры на 100° С будет равно 120 мм. При отсутствии кампе-ншрующих устроЙ1Ств такие удлинения вызыв ают, в стенках труб большие напряжения. Для восприятия удлине1ния труб при нагреве и защиты их, а также установленной на теплопроводах арматуры от разрушающих напряжении применяются специальные компенсирующие устройства. Компенсация температурных удлинений производится или за счет гибкости труб в местах поворотов трассы (естественная  [c.141]


В [Л. 148] показано, что при этом условии возникают дополнительные температурные напряжения яа внутренней поверхности трубы, составляющие 16 кГ1мм .  [c.381]

В третий то.м введены две новые главы, в которых даются справочные данные по напряжениям при нестационарных температурных полях, а также по расчету элементов, выполняе.мых из неметаллических материалов (в частности, из пластмасс). Расширены главы, посвященные расчетам пластин и оболочек дополнительно приведены данные по расчету на колебания элементов турбомашин и расчету тонкостенных труб.  [c.599]


Смотреть страницы где упоминается термин Трубы Напряжения температурные : [c.63]    [c.164]    [c.15]    [c.182]    [c.183]    [c.322]    [c.213]    [c.220]    [c.25]    [c.4]    [c.44]    [c.76]    [c.159]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.12 , c.119 , c.125 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.0 , c.12 , c.119 , c.125 ]



ПОИСК



Напряжение температурное

Температурные напряжения в тонкостенной трубе

Труба Напряжения

Цилиндрические оболочки — трубы температурные напряжения



© 2025 Mash-xxl.info Реклама на сайте