Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория Задача плоская для области односвязной

Основными методами, позволяющими рещать задачи плоской теории упругости для достаточно щирокого класса областей, являются метод конформного отображения и метод интеграла типа Коши. Совместное применение этих методов оказывается наиболее эффективным для односвязных областей.  [c.133]

В дальнейшем под термином аналитические методы будем понимать методы, позволяющие получить решение краевой задачи в виде аналитической функции (скалярной или векторной), удовлетворяющей точно или приближенно уравнениям и граничным условиям этой задачи. Если метод позволяет получить решение, которое точно удовлетворяет как уравнениям краевой задачи во всей области, в которой она решается, так и граничным условиям на всей границе этой области (или на той части границы, на которой они заданы), за исключением, возможно, конечного числа точек, то метод является точным для данной задачи или класса задач. Например, метод Колосова-Мусхелишвили 65] является точным методом решения плоских статических задач линейной теории упругости для односвязных областей, которые могут быть конформно отображены на единичный круг с помощью дробно-рациональной функции. Для многих классов задач точные аналитические решения неизвестны. Это, например, плоские статические задачи линейной упругости для многосвязных областей или статические задачи нелинейной теории упругости при конечных деформациях. Только отдельные задачи этих классов имеют точное аналитическое решение. Существуют методы, позволяющие свести решение таких задач к последовательному решению более простых задач, для каждой из которых точное аналитическое решение может быть найдено. Например, при решении задач линейной упругости для много-  [c.45]


Контурные условия (19) в этом случае отпадают, а условие (18) показывает, что решение задачи для составной конечной области сводится к решению плоской задачи теории упругости для конечной односвязной области.  [c.21]

Как уже говорилось выше, решение основных граничных задач теории упругости для областей обш его вида представляет большие трудности практического характера. Однако суш,ествуют классы областей, для которых решение может быть получено эффективно и сравнительно простыми средствами. Один из таких классов в плоской теории упругости составляют области, которые конформно отображаются на круг рациональными функциями (мы уже встречались в 63 с частным случаем этого класса). Этот класс на первый взгляд может показаться слишком узким однако, как будет подробнее разъяснено в 89, областями этого класса можно с любой точностью приблизиться к практически произвольным односвязным областям.  [c.278]

В 78, 79 был изложен один из общих методов решения основных граничных задач плоской теории упругости для односвязных областей. В настоящем отделе мы даем краткие сведения о некоторых других общих методах (пригодных также для многосвязных областей), ограничиваясь лишь теми, которые либо представляют собой обобщение методов, изложенных в предыдущих отделах настоящей главы, либо так или иначе тесно связаны с ними.  [c.357]

Эффективные решения граничных задач для двусвязных областей. ]Метод Д. И. Шермана. За последнее время был разработан способ эффективного построения решений граничных задач плоской теории упругости для некоторого класса двусвязных областей. Этот класс включает в себя конечные и бесконечные области, ограниченные двумя замкнутыми контурами специального вида. Условием, определяющим упомянутый класс областей, служит требование, чтобы для односвязной области, внешней либо внутренней по отношению к одному из замкнутых контуров, входящих в состав полной границы и содержащей внутри себя второй контур, изучаемая задача допускала эффективное решение.  [c.575]

Применение метода обобщенных рядов к задачам теории упругости. Решение задачи (D/) для односвязной области. Согласно 2 гл. X решение задачи (D,) дается решением функциональных уравнений (10.19i) и (lO.lQj). Для плоской задачи эти уравнения принимают следующий вид  [c.422]


Решение плоской задачи теории упругости сводится к решению бигармонического уравнения относительно функции напряжений ф. Так как оно не содержит упругих постоянных, то на основании принципа Вольтерры можно утверждать, что это же уравнение справедливо и для плоской задачи теории вязкоупругости. Если граничные условия на границе односвязной области, занимаемой рассматриваемым телом, заданы в усилиях, то, как отмечалось в 4.3, решение плоской задачи теории упругости не зависит от упругих постоянных. Следовательно, распределение напряжений в каждый момент времени i в вязкоупругом теле совпадает с распределением напряжений в упругом теле.  [c.360]

В заключение остановимся еще на одном вопросе. Выше были сформулированы краевые задачи для бигармонического уравнения. В,отдельных случаях, например в случае второй основной задачи, при плоском состоянии, постоянные Ламе не входят в краевое условие. Это обстоятельство дает основание предположить, что они вообще не оказывают влияния на искомые напряжения. Однако такое утверждение является справедливым лишь для односвязной области. Дело в том, что в случае многосвязных областей для разрешимости соответствующих краевых задач необходимо ввести в решение определенные слагаемые, уже, как правило, содержащие эти постоянные. Поэтому окончательное решение все же оказывается зависящим от упругих постоянных. Подробно этот вопрос рассматривается далее на основе аппарата теории аналитических функций.  [c.283]

Это положение справедливо для всякой плоской задачи теории упругости в пределах односвязной области если модель изображается многосвязной областью (например, в случае кольца), подобие может не быть полным, но все же точность решения практически достаточна.  [c.130]

Так как в односвязной области для плоского случая решение второй краевой задачи теории упругости не зависит от упругих постоянных, то деформации e,j для односвязной области с коэффициентом Пуассона и выражаются через деформации e]j и для той же области соответственно с коэффициентами Пуассона 1/1 и 1/2 по формуле  [c.313]

Бело НОСОВ С. М., Основные плоские статические задачи теории упругости для односвязных и двусвязных областей, Изд-во Сиб. отд. АН СССР, Новосибирск, 1962.  [c.627]

Как показано в [65], подход, основанный на применении интегралов типа Коши, может быть использован также при решении краевых задач линеаризованной плоской теории упругости для многосвязных областей. Для таких задач может быть применен метод, известный в литературе [41, 63, 65, 135] как метод последовательных приближений Шварца. Этот метод представляет собой итерационный процесс, на каждом шаге которого решается граничная задача для односвязной области, ограниченной одним из контуров, составляющих границу Г данной многосвязной области, причем от шага к шагу номер контура меняется. В более общем виде (без привязки к методу Колосова-Мусхелишвили) метод Шварца рассмотрен в приложении IV. Сходимость этого метода для плоских задач теории упругости доказана [85.  [c.80]

Заметим, что как общие методы, так и частные решения плоских задач теории упругости для односвязных и двусвязных областей в настоящее время разработаны достаточно хорошо.  [c.21]

Основные плоские статические задачи теории упругости для односвязных и двусвязных областей. — Изд-во СО АН СССР, 1962.  [c.427]

Впервые этот метод применил Г. В. Колосов Он показал, что интеграл бигармопического уравнения для функции напряжений, а также граничные условия в напряжениях или смещениях могут быть выражены через функции комплексного переменного. Ряд важных результатов получил Н. И. Мусхелишвили С помощью функций комплексного переменного можно легко получить решение плоской задачи теории упругости для внутренности круга. Если же задана некоторая односвязная область, отличная от круга, то в этом случае надо воспользоваться конформным отображением области на круг. Кроме того, использование интеграла тина Коши позволяет свести плоскую задачу теории упругости к интегральному уравнению Фредгольма второго рода, для решения которого существуют хорошо разработанные приближенные методы. В некоторых случаях (например, для  [c.252]


Решение плоской задачи теории упругости зависит от двух координат и может быть выражено через две произвольные (с точки зрения выполнения уравнений равновесия и условий неразрывности) двухмерные гармонические функции, определяющиеся путем подчинения решения двум краевым условиям на плоском граничном контуре. То обстоятельство, что ортогональные преобразования координат на плоскости и теория двухмерных гармонических функций тесно связаны с теорией функций комплексного переменного, позволило разработать общий метод решения плоской задачи, основанный на аппарате теории аналитических функций (Г. В. Колосов [10], Н. И. Мусхелишвили [20] и его школа). Этот путь в принципе позволяет подойти к решению любой плоской задачи, но наиболее эффективен для односвязных и (в меньшей мере) для двухсвязных областей. Основная идея, которой при этом руководствуются, состоит в отображении рассматриваемой области на одну из канонических областей (на полуплоскость, круг единичного радиуса или круговое кольцо) с последующим использованием аппарата интегралов типа Коши для нахождения двух неизвестных функций по заданному краевому условию. Если ограничиться только односвязными областями (каковые по существу главным образом и рассматриваются [20], [27]), то можно обойтись и без аппарата интегралов типа Коши, оперируя лишь самыми элементарными представлениями теории аналитических фунщий. В нашей книге, носящей общий характер, мы даем только этот наиболее простой и в то же время достаточно эффективный способ, отсылая читателя за более полным и общим изло-  [c.292]


Смотреть страницы где упоминается термин Теория Задача плоская для области односвязной : [c.131]    [c.170]    [c.223]    [c.147]    [c.243]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.47 ]



ПОИСК



Область плоская

Односвязная область

Плоская задача

Теории Задача плоская



© 2025 Mash-xxl.info Реклама на сайте