Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растяжение, сжатие сложные случаи

При сложном напряженном состоянии подразделение материалов на хрупкие и пластичные является в большой степени условным. Материал, обладающий пластическими свойствами при осевом растяжении (сжатии), в случае сложного напряженного состояния может вести себя как хрупкий и разрушаться без значительных остаточных деформаций. Наоборот, материал, хрупкий при осевом нагружении, при другом напряженном состоянии может обнаружить ярко выраженные пластические свойства.  [c.253]


Сложный изгиб с растяжением (сжатием) прямого бруса. Если па балку действуют и продольные и поперечные нагрузки, пересекающие ось бруса, то в общем случае (рис. 325, а) в поперечных сечениях возникают изгибающие моменты и в двух плоскостях, поперечные силы и Qy, а также продольная сила М (рис. 325, б). Таким образом, в этом случае будет сложный изгиб с  [c.338]

При сложном напряженном состоянии такую простую зависимость, как диаграмма растяжения — сжатия, в общем случае мы не имеем. Однако в случае простого нагружения в условиях сложного напряженного состояния существует единая универсальная кривая упрочнения (см. рис. 11.12). На рис. 11.1 на примере испытания тонкостенной трубки показаны различные пути простого на-  [c.250]

Величина предела выносливости существенно зависит от вида деформации образца или детали. В связи с тем что испытания на выносливость при растяжении-сжатии, а также при кручении требуют более сложного оборудования, чем в случае изгиба, проводятся они значительно реже. Поэтому при отсутствии опытных данных соответствующие пределы выносливости определяют по известному пределу выносливости при симметричном цикле изгиба на основе следующих эмпирических соотношений  [c.333]

Под сложным сопротивлением подразумевают различные комбинации простых напряженных состояний брусьев (растяжение, сжатие, кручение и изгиб ). В общем случае нафужения бруса в поперечных сечениях возникают шесть компонентов внутренних силовых факторов - Qy N, М , My, Т, связанных с четырьмя простыми деформациями бруса.  [c.29]

В испытательных машинах, которые дают возможность экспериментальным путем установить зависимости между напряжениями и деформациями в теле, удается получить результаты преимуш,е-ственно лиц(ь в одномерном случае. Это либо одноосное растяжение—сжатие, либо сдвиг. Более сложный эксперимент может быть поставлен на трубчатых образцах, в которых удается экспериментально получить зависимости между напряжениями и деформациями при плоском напряженно-деформированном состоянии. Для этого, например, трубку можно подвергнуть растяжению, скручиванию и внутреннему давлению. Такие эксперименты очень трудоемки и выполняются лишь в особых случаях.  [c.143]

Для расчета таких деталей необходимо, как и в случае статической нагрузки, создать теорию прочности при переменных напряжениях, которая позволила бы судить о прочности материала, находящегося в сложном напряженном состоянии, на основании опытных данных о его прочности при центральном растяжении-сжатии.  [c.596]


При одновременном действии продольных и поперечных сил брус испытывает одновременно растяжение или сжатие и сложный изгиб. Нормальное напряжение в любой точке сечения определяется как алгебраическая сумма напряжений от изгиба и от растяжения (сжатия). Если брус находится под действием уравновешенной системы продольных сил, приложенных к торцовым сечениям внецентренно, то деформация бруса называется внецентренным растяжением (сжатием). Напряжение для произвольной точки сечения в этом случае находится так же, как и при одновременном действии продольных сил и изгибающих моментов.  [c.191]

Из рис. 6.4 можно видеть, что на ударное поведение композита могут оказывать влияние такие факторы, как структура материала (характеристики композита, содержание компонентов в нем, особенности распределения фазы и форма конструкции), окружающие условия (температура, влажность и др.), условия нагружения внешними силами (скорость удара, растяжение, сжатие, изгиб, сдвиг и т. д.). Поэтому точное описание и определение поведения композита представляют собой сложную задачу. Исследование поведения таких материалов при высоких скоростях деформаций можно проводить аналитически, экспериментально или же в случае необходимости использовать комбинированные методики, содержащие как теоретические, так и экспериментальные элементы. При исследовании поведения материала можно выделить два этапа  [c.148]

Параметры обобщенной диаграммы циклического упругопластического деформирования, получаемые для простых случаев напряженного состояния (растяжение—сжатие, сдвиг—сдвиг), для расчета диаграмм деформирования могут быть распространены и на режимы сложного нагружения, подобные рассмотренным в работе [17] на примере стали 50. Аналогичные данные получены в работе [15] на алюминиевом сплаве Д-16Т.  [c.62]

Максимального снижения массы можно добиться приданием деталям полной равнопрочности, т. с. чтобы напряжения в каждом сечении детали по ее продольной оси и в каждой точке этого сечения были одинаковыми. На практике такой случай возможен, если нагрузку воспринимает все сечение детали и отсутствуют резкие концентраторы напряжений (растяжение — сжатие). При изгибе, кручении или сложном напряженном состоянии (например, изгиб с кручением) напряжения в сечении распределяются неравномерно. В этих случаях удается только приблизиться к условию полной равнопрочности выравниванием напряжений по сечению, удалением металла из наименее нагруженных участков сечения и сосредоточением его в наиболее нагруженных местах — на периферии сечения.  [c.91]

Подавляющее большинство элементов энергооборудования работает в условиях сложнонапряженного состояния (объемного для толстостенных и плоского для тонкостенных конструкций), обусловленного в основном внутренним давлением рабочей среды. Напряженное состояние конструктивных элементов сложной конфигурации при теплосменах также в общем случае имеет неодноосный характер. При этом в отличие от напряженного состояния, вызванного внутренним давлением среды с постоянным соотношением главных напряжений, при теплосменах имеет место широкое варьирование соотношения компонент напряжений в зависимости от преобладающего для данного элемента вида термоциклического нагружения (растяжение, сжатие, кручение, изгиб). Для деталей стационарного теплоэнергетического оборудования расчетные условия выбирают на основании длительной их работы в области повышенных температур при ползучести, обусловленной статическими напряжениями от внутреннего давления. Эксплуатация стационарных теплосиловых установок характеризуется относительно невысокими абсолютными рабочими температурами (Тр < 650° С) с небольшим располагаемым градиентом АТ и высокими статическими напряжениями растяжения от внутреннего давления, особенно в зонах концентрации напряжений. Следовательно, термическая усталость металла вместе с ползучестью при-  [c.19]

При деформировании материала между компонентами напряжений и компонентами деформаций существует связь. В упругих материалах эта связь является алгебраической, однозначной. В данной главе мы займемся простейшей моделью гипотетического тела, обладающего свойствами линейной упругости. Закон линейной упругости в случае сложного напряженного состояния вводится путем обобщения известных формул закона Гука, полученных для случаев растяжения-сжатия и чистого сдвига. Деформацию элемента линейно упругого материала при сложном напряженном состоянии можно найти на основе принципа наложения, состоящего в том, что некоторая деформация, вызванная системой напряжений, определяется как алгебраическая сумма деформаций, вызванных каждым напряжением в отдельности.  [c.107]


Выше, в 13.1 мы подсчитывали потенциальную энергию U упругой деформации стержня через работу W одной внешней обобщенной силы (см. формулы (13.7), (13.11), (13.14)). Там же величину U определяли через внутренние усилия (см. выражения (13.16), (13.17)). Наконец, в случае сложного изгиба с одновременным кручением, а также с растяжением-сжатием энергию и рекомендовалось находить в виде суммы (13.18).  [c.235]

СЛОЖНЫЕ СЛУЧАИ РАСТЯЖЕНИЯ И СЖАТИЯ  [c.65]

Указанные выше приемы проверки прочности материала при переменных напряжениях относятся к случаю простейших деформаций — растяжения, сжатия, кручения и изгиба. Возникает вопрос, как использовать полученные данные для случаев сложного напряженного состояния.  [c.566]

Состояние поверхности деталей, концентраторы напряжений, окружающая среда, температура и прочие факторы настолько сильно влияют на сопротивление усталости, что сама по себе усталостная прочность металла гладких шлифованных образцов не является сколько-нибудь показательной. Кроме того, между пределом выносливости a i образцов и временным сопротивлением разрыву для сталей существует довольно устойчивая зависимость (рис. 12), которую можно использовать для расчетного определения предела выносливости на основе кратковременных испытаний на растяжение [81]. В большинстве случаев испытания на усталость ведут при напряжениях от изгиба или кручения. Реже применяют осевые (растяжение-сжатие) или сложные нагрузки (изгиб -f кручение и др.). При этом различают испытания при заданных величинах напряжений (мягкая нагрузка) и деформаций (жесткая нагрузка). В последнем случае усталостной характеристикой испытуемого объекта является предельная величина  [c.19]

Весьма сложный характер носит проявление эффекта масштаба при испытаниях образцов с концентраторами напряжений. В этом случае уменьшение величины предела выносливости имеет место не только при изгибе и кручении, но и при растяжении — сжатии [153].  [c.26]

Если заданы размеры и материал, то согласно (14.18) можно определить критическое удлинение к. При сжатии соответствующий график подобен графику, показанному в предыдущем параграфе. Анализ задачи о растяжении намного сложнее, чем в случае несжимаемого материала, в связи с большей сложностью соответствующих функций. Не будем приводить полный анализ, а лишь покажем, что при llh с потеря устойчивости происходит для значения X, которому соответствует максимум номинального напряжения.  [c.99]

В предыдущих главах указывалось, что для проверки стержня на прочность необходимо сравнить возникающие в нем рабочие напряжения с допускаемыми, причем под допускаемым напряжением понималось отношение предельного напряжения к запасу прочности. Продолжая считать величину запаса прочности заданной, рассмотрим возможности нахождения предельного напряжения или предельной нагрузки. В простейших случаях растяжения и сжатия предельную нагрузку можно найти непосредственно из опыта. Но в более сложных случаях, при работе конструкции одновременно на разные виды деформаций, опыт или затруднителен, или вообще неосуществим.  [c.293]

Таким образом, если принять за основной показатель сложной или простой конечной деформации поворот направлений наибольших конечных удлинений, то следовало бы прийти к выводу, что при конечных растяжении, сжатии и чистом сдвиге поворота осей нет. Если же принять за основной показатель поворот направлений наибольших сдвигов, то во всех трех случаях имеет место поворот. Ранее было показано, что пластическая деформация идет путем сдвигов или двойникования, которое тоже представляет собой особый случай сдвига.  [c.161]

Балки очень часто одновременно работают на изгиб и сжатие (растяжение). Такая сложная деформация может возникнуть от совместного действия на балку осевых сил и сил, перпендикулярных ее оси, или любых сосредоточенных сил, направленных под углом, не равным 90°, к оси балки. Например, в случае торможения крана подкрановая балка подвергается одновременному действию изгиба от вертикальных сил Ру, передающихся от колес тележки, и сжатия от тормозной силы Рг, возникаю-щей при торможении (рис. 143, а). Лестничные косоуры рассчитывают на сплошную равномерно распределенную нагрузку от толпы людей, которая, действуя под углом к продольной оси косоура, вызывает в его сечениях продольную силу и изгибающий момент (рис. 143, б).  [c.194]

Для описания ползучести предложены различные (простые и более сложные) уравнения. Здесь рассматриваются уравнения ползучести (теории ползучести) и их особенности в случае одноосного напряженного состояния (растяжение, сжатие).  [c.92]

Способность материалов сопротивляться более сложным видам действия сил экспериментально менее изучена. Однако в практике такие случаи постоянно встречаются. И вот необходимо иметь какой-то критерий, по которому можно было бы на основании опытов, произведенных над простейшими видами действия сил (растяжение, сжатие), судить о несущей способности в более сложных случаях нагружения. Постепенно появилось несколько гипотез прочности, т. е. предположений, дающих возможность судить  [c.398]

Оценка прочности в случае сложного напряженного состояния. Сложным напряженным состоянием называется любое отличное от одноосного растяжения (сжатия) напряженное состояние частицы.  [c.248]

Одна из характерных кривых изменения температуры образца с числом циклов, измеренная таким способом, представлена на рис. 4, б. Резкий подъем температурной кривой, соответствующий развитию микротрещины, начался за 50 ООО циклов (50 мин) до разрыва (точка У), в то время когда излом на кривой возбуждаемого сигнала появился за 23 ООО циклов до разрыва (точка 2). Как было показано, излом на кривой становится заметным для такой схемы измерений при длине трещины 3—5 мм (глубина л 1 мм). Температурный метод в данном случае более чувствителен, так как сигнализирует о приближающемся разрушении значительно раньше. Однако метод обнаружения усталостной трещины по появлению изломов на кривой сигнала, возбуждаемого в измерительной катушке при циклическом растяжении — сжатии образца в постоянном магнитном поле, имеет свои преимущества сравнительная простота, бесконтактность, возможность контроля деталей сложной формы, нет необходимости знать начальный уровень сигнала, так как в основу положено не количественное изменение какой-либо величины, а качественное существенное изменение формы сигнала, которое происходит только при наличии трещины и не может возникнуть по другим причинам. Достигнутая чувствительность не является предельно возможной для данного метода, ее увеличение возможно за счет компенсации начального сигнала, вызванного циклическим нагружением образца без трещины.  [c.140]


В процессе работы протяжки и прошивки подвергаются сложной деформации (растяжение, сжатие, кручение, изгиб). При проектировании протяжек обычно учитывают лишь главную деформацию (растяжение у протяжек, сжатие у про-шивок), возникающую под действием осевой составляющей усилия протягивания. В этом случае условие прочности протяжки (прошивки определяется следующим образом  [c.319]

В случае, когда напряженное состояние в опасном объеме представляет собой растяжение-сжатие по несимметричному циклу, дело обстоит сложнее. Напомним, что в этих обстоятельствах условие (20.15) возникновения предельного состояния соответствует лишь точке перелома на кривой усталости. Нам же нужно обобщить эту формулу на случай, когда разрушения возможны при N< No. Для этого следует от понятия предела выносливости сг 1 перейти к понятию предела ограниченной выносливости сг ]л/, что позволяет вместо (20.15) получить более общее выражение  [c.367]

Имея в своем распоряжении несколько теорий для оценки прочности деталей из хрупких и пластичных материалов, инженер, исходя из реальных свойств материала, в каждом отдельном случае должен установить, какая из теорий прочности здесь более пригодна. Решение этого вопроса затрудняется тем, что при сложном напряженном состоянии деление материалов на хрупкие и пластичные в значительной мере условно. Материал, обладающий пластическими свойствами при простом растяжении или сжатии, в случае сложного напряженного состояния мол ет себя вести как хрупкий и разрушаться без значительных остаточных деформаций. Наоборот, материал, хрупкий при линейном напряженном состоянии, при других напряженных состояниях может оказаться пластичным. Таким образом, пластичность и хрупкость материала зависит от условий, в которых он работает в сооружении. Поэтому правильнее говорить не о хрупком и пластичном материале, а о хрупком и пластичном состоянпп материала.  [c.143]

При модернизации деталей применяют различные приемы (рис. 2.3.15). Коническая шайба а) превращается в многолепестковую (б), каждый лепесток которой работает как балка. Плоская пластина (в) превращается в упругую раму (г). В полом цилиндре (й) делаются прорези. В ряде случаев выполняют круговые отверстия (е) в зоне сопряжения элементов. На перемычки между двумя близкими отверстиями (ж) наклеиваются тензоре-зисторы. Простым приемом является изменение конструкции детали за счет ее предварительной деформации. Так, балка (з) в варианте (и) работает на продольный изгиб. Более сложным является полная замена детали с сохранением ее габаритов. В варианте (к) прямоугольный параллелепипед заменен ажурной конструкцией на шести стержнях, которые работают практически только на растяжение-сжатие, что воспринимается наклеенными на них тензорезисторами. По такой схеме строятся варианты шестикомпонентных датчиков (три составляющих силы, три составляющих момента).  [c.188]

В то же время нащи экспериментальные исследования (В. А. Коннов) стеклотекстолитов различных марок, а также исследования авторов работ [4], [48], [76] и др. показали, что кривые длительной прочности при одноосном растяжении, сжатий, сдвиге приблизительно подобны, Это позволяет принять гипотезу о равномерном сужении поверхности длительной прочности с ростом времени пребывания тела под нагрузкой. В таком случае, используя в качестве левой части условия (5.46), например выра-, жение (5,28), критерий длительной прочности, при сложном напряженном состоянии можно записать в следующем виде  [c.160]

Знак нормальных напряжений вдоль ненагруженного контура плоской модели в простейших случаях можно найти, используя условия равновесия или исходя из знака напряжений в соседних зонах. В более сложных случаях для определения знака нормальных напряжений, а также для определения, растет или падает порядок полос от края внутрь модели, производится незначительное нажатие по всей толщине модели острым предметом из материала более жесткого, чем дюдель (край лезвия, угол стального бруска, ноготь). Так как сосредоточенное давление дает разность главных напряжений, соответствующую растяжению вдоль контура, то на растянутом контуре модели порядок полос от нажатия будет увеличиваться и на сжатом контуре — уменьшаться. Соответственно, если полосы при нажатии от растянутого (сжатого) контура- отдаляются (приближаются к нему), то величина порядка полос при переходе от контура внутрь модели падает (фиг. III. 6).  [c.170]

Величина предела выносливости в значительной мере зависит от вида деформации.. Испытания на выносливость при растяжении —сжатии и кручении проводятся реже, поскольку они требуют более сложного оборудования, чем в случае изгиба. Поэтому пределы выносливости при растяжении ст 1р и кручении определяют из эмпирических формул по известному пределу выносливости при симметричном цикле изгиба  [c.310]

Французский инженер и ученый Луи Мари Анри Навье (1785—1836) привел в систему все разрозненные сведения, многое исправил и дополнил своими исследованиями. В то время как исследователи XVIII века ставили своей целью составить формулы для вычисления разрушающих нагрузок, Навье признал наиболее правильным находить то значение нагрузки, до которого сооружения ведут себя упруго — не получают остаточных деформаций. Он установил, что нейтральный слой изгибаемой балки проходит через ее ось, и дал правильное толкование постоянной С, входящей в формулу Бернулли =EJ применил дифференциальное уравнение изогнутой оси к различным случаям загружения балок и разработал метод решения статически неопределимых задач при растяжении, сжатии и изгибе исследовал продольный изгиб при эксцентричном приложении сжимающей нагрузки, а также сложные случаи совместного действия изгиба с растяжением или сжатием, изучил изгиб кривых стержней (арок), пластинок и др. В 1826 году Навье издал курс сопротивления материалов. Эта книга нашла широкое признание, ею пользовались как основным руководством инженеры во многих странах в течение нескольких десятков лет.  [c.560]

Различные частные случаи сложного сопротивления можно разделить на такие, при которых в опасных точках сечения напряженное состояние является линейным либо может рассматриваться как линейное за счет пренебрежения влиянием касательных напряжений, и такие, при которых в опасных точках сечения напряженное состояние является плоским. К первой группе сложных сопротивлений относятся косой изгиб и внецент-ренное растяжение или сжатие. В этих случаях расчет производится без применения теорий прочности. Ко второй группе сложных сопротивлеииЛ относятся совместный изгиб и кручение, совместное растяжение (сжатие) и кручение, а также совместное действие растяжения (сжатия), изгиба и кручения. В указанных случаях расчет на прочность производится на основе теорий прочности.  [c.226]


Смотреть страницы где упоминается термин Растяжение, сжатие сложные случаи : [c.72]    [c.8]    [c.126]    [c.122]    [c.362]    [c.115]    [c.45]    [c.97]    [c.190]   
Сопротивление материалов Издание 13 (1962) -- [ c.72 ]



ПОИСК



ОТДЕЛ II СЛОЖНЫЕ СЛУЧАИ РАСТЯЖЕНИЯ И СЖАТИЯ Расчет статически неопределимых систем по допускаемым напряжениям

ОТДЕЛИ СЛОЖНЫЕ СЛУЧАИ РАСТЯЖЕНИЯ И СЖАТИЯ Расчёт статически неопределимых систем по допускаемым напряжениям

Растяжение (сжатие)



© 2025 Mash-xxl.info Реклама на сайте