Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шум фазовый

Глаз-диаграмму можно получить на экране осциллографа (рис. 14.5), если на его вход У подать принимаемый цифровой сигнал, а на вход X — сигнал восстановленной тактовой частоты. Развертку и усиление следует установить таким образом, чтобы на экране разместилось изображение сигнала на интервале нескольких тактов. На одном тактовом интервале изобра--жение напоминает по форме глаз, отсюда и название. Если глаз полностью открыт и принимает прямоугольную форму-— канал передачи сигнала идеален. По мере увеличения шумов, фазовых дрожаний, увеличения длительности фронтов, низкочастотных искажений веки глаза закрываются, и при полностью закрытом глазе пороговое различение битов невозможно. Таким образом, глаз — диаграмма является интегральным параметром, характеризующим основное потребительское свойство канала передачи — способность передать сигнал в виде, пригодном для приема.  [c.149]


Другая картина наблюдается, когда в стержне возбуждаются изгибные волны. Частотная характеристика стержня в этом случае также имеет вид (3.39), но фазовая скорость пропорциональна корню И частоты с = со (см. главу 5). Коэффициент взаимной корреляции (3.37) между входным и выходным сигналами для розового шума в полосе частот Аш равен  [c.104]

Определить величины и допуски для всех таких функциональных параметров, как усиление фазовый сдвиг запас по фазе устойчивость с обратной связью контурное усиление в переходном состоянии частота полное сопротивление нагрузки входное и выходное полные сопротивления напряжение ток мощность время нарастания сигнала форма сигнала смещение по постоянному току баланс шум, генерируемый в одном или нескольких элементах пределы регулирования устойчивость всех регулировок в зависимости от допусков, температуры, окружающих условий, старения и т. д. уровень детектирования для порогового детектора синхронизация специальные логические и защитные схемы.  [c.37]

II т. д. Однако при наличии внеш. помех (фон, шу.мы приёмника, квантовый шум) чувствительность И. и, по потоку излучения снижается в большей степени, чем чувствительность обычного фазового интерферометра, поэтому И. и, используют только для ярких источников. Из-за отсутствия информации о фазе И. и. не даёт комплексного спектра пространственных частот, необходимого для получения изображения.  [c.173]

Рис. 14. Классический шумовой сигнал при параметрическом усилении а — плотность вероятности распределения фазы обычного стационарного шума (штриховая линия) и шума при сжатом состоянии (кривые 1 и г, для г коэф. усиления больше) и — области флуктуаций на фазовой плоскости обычного (слева) и сжатого (справа) шума. Рис. 14. Классический <a href="/info/412990">шумовой сигнал</a> при <a href="/info/172537">параметрическом усилении</a> а — <a href="/info/28815">плотность вероятности распределения</a> фазы обычного стационарного шума (<a href="/info/1024">штриховая линия</a>) и шума при <a href="/info/624105">сжатом состоянии</a> (кривые 1 и г, для г коэф. усиления больше) и — области флуктуаций на <a href="/info/9967">фазовой плоскости</a> обычного (слева) и сжатого (справа) шума.
Поведение квадратур, т. о., существенно зависит от фазы накачки 0. Фазовая селективность рассматриваемого параметрич. процесса — важнейшая его особенность, исследованная в радиодиапазоне в нач. 1960-х гг, [4]. Тогда же были продемонстрированы возможности управления статистич. характеристиками эл.-магн. полей, снижения уровня фазовых флуктуаций, улучшения характеристик систем выделения сигнала из шума. Действительно, при соответствующей ориентации эллипса сжатия на фазовой плоскости, регулируемой выбором фазы накачки, подавление флуктуаций квадратуры приводит к снижению фазовых флуктуаций. Это просто показать на примере клае-сич. С. с. Пусть напряжённость поля (эллипс ориентировав вдоль оси X)  [c.489]


Для аппаратурного определения сдвига фаз используют три основных метода. Первый метод основан на прямом или косвенном измерении отношения временного интервала между характерными точками двух сигналов (например, переходами через некоторый заданный уровень, обычно нулевой) к периоду исследуемых сигналов [5, 21 Фазометры этого типа имеют относительно простую конструкцию и обеспечивают получение высокой точности измеряемого фазового сдвига при высоком соотношении сигнал/шум.  [c.247]

Если параметрическое возбуждение отлично от белого шума, анализ устойчивости существенно усложняется. Стационарный нормальный процесс с дробно-рациональной спектральной плотностью можно получить, пропуская белый шум через линейный фильтр с постоянными параметрами. В статье [65] было предложено расширять фазовое пространство с помощью переменных, описывающих процесс в системе фильтра, и исследовать устойчивость по отношению к моментным функциям в расширенном фазовом пространстве. Таким путем были построены области устойчивости для случайных процессов со скрытой периодичностью и обнаружены аналога побочных параметрических резонансов. Ряд примеров приведен в работе [8], где также дано сопоставление теоретических результатов с данными вычислительного эксперимента.  [c.531]

Например, если колебательная система с fj степенями свободы находится под воздействием белых шумов, то изменение ее фазовых переменных (обобщенных координат и обобщенных скоростей) представляет собой диффузионный марковский процесс. Если внешнее воздействие есть результат прохождения белых шумов через некоторый линейный фильтр, то для получения диффузионного марковского процесса необходимо расширить фазовое пространство, добавив компо-  [c.51]

Зависимость распределения от параметров системы и внешних воздействий определяется уравнением движения (2.7). Однако при произвольном случайном воздействии, не выражающемся в виде белого шума , из уравнения (2.7) невозможно установить вид функции р (х, t). В общем случае, используя операцию осреднения по множеству реализаций, на основании уравнений движения типа (2.7) можно составить соотношения относительно моментных функций фазовых переменных (л ), xjx ), xj-x xi) и т. д.  [c.41]

В работах И. Н. Богачева [1, 118] и Г. Шумана [177] на отдельных составах было показано, что железомарганцевые сплавы имеют явно выраженный и более или менее растянутый интервал порога хладноломкости, что обусловлено не только фазовым составом сплава, но и природой фаз, а также особенностями их сочетания. Порог хладноломкости при этом оценивался только по характеру изменения ударной вязкости. Позднее было обнаружено пороговое изменение ударной вязкости и на аусте-нитных железомарганцевых сплавах с 13 [178] и 40% Мп [1, 120].  [c.191]

Цифровая голограмма в процессе записи претерпевает различные искажения, связанные с неидеальностью характеристик записывающих устройств и особенностями используемых для записи сред. Эти искажения следует компенсировать в процессе синтеза голограмм и их записи. Наиболее характерные виды искажений — нелинейные искажения сигнала при записи голограммы, квантование и ограничение динамического диапазона сигнала, собственный амплитудный и фазовый шумы сред, используемых для записи синтезированных голограмм.  [c.103]

Лампа бегущей волны (Л Б В) — электровакуумный прибор, работающий на основе взаимодействия электронного потока с бегущей волной электромагнитного поля, созданного длинной спиралью, расположенной внутри баллона лампы применяется в усилителях и генераторах СВЧ, может использоваться в относительно широком диапазоне частот (до 10% от средней частоты), характеризуется низким уровнем шумов, может отдавать мощность 100 кВт и более. В изофарной ЛБВ поддерживается оптимальный фазовый сдвиг между током и электромагнитной волной, в изохронной ЛБВ к концу замедляющей системы скорость электромагнитной волны снижается для лучшего согласования скорости электронов и волны, в многолучевой ЛЕВ используется несколько параллельных пучков электронов [2].  [c.146]


В. Хорстехемке и Р. Лефер [26] распространили понятие фазового перехода на новый класс неравновесных явлений перехода, связанными со случайными свойствами среды. Этот тип переходов авторы [26] назвали неравновесными фа ювыми переходами, индуцированными шумами. Этим на 5ванием подчеркнут тот факт, что новый класс явлений перехода тесно связан с классическими равновесными фазовыми переходами и с неравновесными переходами, характерными для синергетических систем. При анализе неравновесных фазовых переходов, индуцированных случайными свойствами среды (внешний шум), придается важная роль флуктуациям свойств среды, которые в точках неустойчивости системы перестают быть шумом и приводят к глобальным изменениям в системе.  [c.43]

Для коррекции АЧХ усилителя 7 мощности и нагруженного вибровозбудителя 8 в устройство введеп имитатор 13 случайной вибрации, содержащий фильтры с широкой полосой перестройки, с помощью которых выравнивается энергетическая характеристика и АЧХ. В имитаторе 13 предусмотрен регулируемый усилитель, который при превышении заранее установленного уровня вибрации в экстремальном ограничителе 16 по какой-либо координате объекта уменьшает уровень возбуждения, поступае-мого на вибровозбудитель 8, или регулирует фазовые соотношения между сигналами. При многофункциональных испытаниях к одному входу второго сумматора через блок 6 формпро-вания сигнала подключен генератор 1 шума, а к другому входу второго сумматора через второй коммутатор — генератор 14 треугольных пмпульсов. Сигналы с генератора 1 шума и генератора 14 формируют виброударный импульс на выходе второго сумматора 17, отклик объекта 9, на воздействие которого также индицируется индикатором 15. Экстремальный ограничитель 16 п в этом случае не позволяет дорогостоящему объекту 9 выйти пз строя, ограничивая резонансные колебания его отдельных элементов.  [c.327]

Поскольку для определения математического ожидания и дисперсии косинуса фазовой ошибки необ.ходимо знание плотности распределения фазы смеси щ(<р), для ее измерения был создан исследовательский стенд. Кро.ме того, была создана оригинальная аппаратура для непосредственной регистрации числовых характеристик фазы — и Измерение плотности распределения клиппированной смеси осуществлено на 256-канальном анализаторе типа АИ-256-1, имеющем наряду с режимом амплитудного анализа режим анализа временных интервалов. Так как анализатор рассчитан на короткие (с передним фронтом 0,2—4 мксек) импульсы, была разработана специальная приставка, обеспечивающая необходимые параметры входных сигналов. Узкополосные случайные помехи образуются путем пропускания сигнала генератора шумов Г2-12 через фильтры с высокой добротностью и изменяемой резонансной частотой. Для анализа была принята. модель в виде суммы А2 векторов сигнала Ас и помехи Ап, вращающи.хся со скоростями 05с И о5 = К(Ос соответствеино. При этом условие клиппирования предполагает измерение фазовой ошибки между Ас и Л л в момент, когда вектор А пересекает мни.мую ось слева направо (рис. 3). Учитывая равномерность распределения фазы по.мехи е  [c.306]

Один из вариантов А. а.— самофокусирующаяся антенная решётка. В режиме приёма она обрабатывает принимаемую волиу с любым фазовым фронтом так, что сигналы от всех элементов суммируются син-фаано. Благодаря отому при изотропно приходящих внеш. шумах обеспечивается максимум отношения спгнал/шуы на выходе А. а. Самофокусирующаяся А. а. может работать и в приёмно-неродающем режиме при этом излучение сигнала осуществляется в направлении источника принимаемой волны. И в режиме приёма, и в режиме передачи принимаемый сигнал используется для управления фазами токов в отд. элементах А. а. Приёмно-передающая самофокусирующаяся А. а. в известном смысле сходна с системами обращения волнового фронта, используемыми, в частности, в оптике. А. а. применяют в системах связи, в радиолокации, радиоастрономии и т, д.  [c.24]

АКТИВНАЯ АНТЕННА — антенна, содержащая в своей структуре активные y Tpoii TBa, в частности усилители мощности (переданная А. а.) или малошумящие усилители (приёмная А. а.). Чаще всего А. а. явля-ется антенная решётка. Исполь.эование активных устройств в передающей А. а. позволяет компенсировать потери в трактах и обеспечивать оптим. распределение амплитуд и фаз токов по излучающей апертуре. Напр., если усилители мощности, подключённые непосредственно к излучателям А. а., работают в режиме насыщения, то независимо от используемой системы возбуждения можно поддерживать постоянным распределение амплитуд токов в излучателях, что обеспечивает макс. коэф. направленного действия и повышает стабильность работы антенны. Приёмная А. а. со встроенными малошумящими усилителями имеет существенно большее отношение сигнал/шум на входе приёмника по сравнению с аналогичной пассивной антенной. Регулируя усиление активных устройств, можно эффективно осуществлять управление диаграммой направленности, независимо регулируя амплитуды и фазы токов в элементах решётки (напр., в адаптивных антеннах). Амплитудно-фазовое управление диаграммой направленности можно реализовать в приёмных А. а. с преобразованием радиосигналов (папр., аналого-цифровым) соответствующим выбором амплитуд н фаз весовых коэф. при обработке. Недостатки А. а. активные элементы выделяют тепло, ра.эброс их характеристик приводит к дополнит, искажениям поля.  [c.38]

Розопапсы играют существ, роль при распространении В. в п. Вблизи них резко возрастают затухание волн и уровень тепловых шумов. Показатель преломления ЭЛ.-магн. волн вблизи этих резонансов велик (Л">1), а фазовая скорость значительно меньше скорости света, так что взаимодействие частиц с волнами происходит наиб, эффективно именно вблизи резонансов. Нагрев плазмы волнами в области нишнегпбрид-ного резонанса широко используется в термоядерных установках типа Токамак.  [c.330]

Характеристики ЛБВ типа О. Наибольшие полосы усиливаемых частот до 2,5 октав — достигаются в ЛБВ с замедляющей системой в виде металлпч. спирали, закрепленной диэлектрич. оиорами, к-рые, однако, ухудшают теплоотвод от спирали, ограничивая выходную мощность сотнями Вт в непрерывном режиме работы. В ЛБВ с замедляющими системами типа цепочек связанных резонаторов полосы усиливаемых частот меньше ( 10%), но зато выходные мопщости достигают десятков кВт в непрерывном и единиц МВт в импульсном режимах работы. Типичные значения кпд 20 30%, для его увеличения снижают потенциал коллектора с целью торможения электронов и возврата части их энергии источнику (рекуиерация) используют также уменьшение фазовой скорости волны к концу замедляющей системы для обеспечения синхронизма с тормозящимися электронами, скачки фазы поля вдоль системы и др. приёмы. Коэф. усиления составляет G = =20 1й( выхМвх)=30—60 дБ(Лв х, вX— амплитуда сигнала на выходе и входе), причём для предотвращения самовозбуждения ЛБВ из-за отражений от концов замедляющей системы на одном или двух участках системы помещают поглотитель энергии СВЧ-колебаний. Маломощные ЛЕВ с выходной мощностью менее 2 Вт используют в качестве малошумящих входных усилителей с коэф. шума 4—20 дБ.  [c.570]


Требуемая энергия зондирования может быть сосредоточена в одном импульсе или в группе из п когерентных импульсов (т. е. пмпульсных вырезок из единого синусоидального колебания при этом напряжение сигнала на выходе возрастает в п раз в сравнении с одним импульсом). Возможно также увеличить энергию сигнала за счёт некогерентного интегрирования импульсов на видеочастоте в этом случае не потребуется поддержания определённых фазовых соотно1пений между импульсами на высокой и промежуточной частотах, но напряжение на интеграторе будет возрастать только как У"п. В теории Р, доказывается, что существует оптимальный приём, при к-ром достигается наибольшее возможное при данной энергетике превышение сигнала над шумом на выходе согласованного фильтра фильтра электрического, импульсная характеристика к-рого является зеркальным отражением на оси времени), Когерентный приём позволяет приблизить энергетику РЛС к теоретик, пределу.  [c.220]

Величина т может измеряться импульсным или фазовым методом. В первом случае излучение посылается короткими импульсами и измеряется непосредственно временной интервал т между излучённым сигналом S(t) и принятым сигналом S(t — т). Устанавливается критерий отсчёта начала и конца временного интервала по определённым (пороговым) параметрам импульсов, напр. по фронту импульса или энер-гетич. максимуму. Этот порог должен быть достаточно высоким, чтобы превышать шумы. Собственно измерение интервала времени между посылаемым и отражённым импульсами осуществляется аналоговыми или цифровыми методами. В аналоговом измерителе временной интервал преобразуется в амплитуду напряжения. В цифровом методе интервал времени определяется по числу импульсов тактового генератора, прошедших на счётчик за этот интервал времени.  [c.465]

Иногда термин квазиаттрактор применяют к системе, к-рая имеет большое число асимптотически устойчивых стационарных состояний, причём соседние состояния отделены одно от другого достаточно низким барьером. Под действием случайных возмущений система будет перемешаться между разл. состояниями, оставаясь постоянно в окрестности притягивающего множества Л/ (составленного из отдельных стационарных состояний). Если возмущение окажется немалым и система уйдёт далеко от Л/, то вследствие асимптотической устойчивости компонентов А/ она вернётся в окрестность А/. При наличии такого квазиаттрактора фазовые траектории системы притягиваются к нему, а затем под действием шумов начинается случайное блуждание между его компонентами. Квазиа гтракторы иногда обнаруживаются при численном исследовании нелинейных динамич. систем (без флуктуаций). где роль шумов играют погрешности вычислит, процедуры.  [c.255]

Чтобы проекционный объектив, формирующий изображение в бесконечности, осуществлял преобразование Фурье, необходимо транспарант с исходной информацией, освещаемый плоской волной, установить со стороны параллельного хода лучей (бесконечного отрезка) в фокальной плоскости объектива, тогда в другой фокальной плоскости распределение амплитуды поля будет соответствовать преобразованию Фурье от распределения комплексного пропускания транспаранта без фазовых искажений [24]. Для дублета линза — асферика в этом случае направление хода лучей оказывается обратным по сравнению с рассмотренным в п. 4.2, причем транспарант необходимо установить в плоскости дифракционной асферики. Ясно, что высокого и независимого от дифракционной эффективности линзы объектива отношения сигнал/шум в спектре пространственных частот можно достигнуть лишь тогда, когда свет, дифрагированный в нерабочие порядки линзы, не попадает в рабочую зону фурье-плоскости указанного спектра. Это будет обеспечено, если сместить апертурную диафрагму и, следовательно, обрабатываемый транспарант относительно оси объектива,  [c.151]

При данном значении угла (т. е. при известном наклоне нелинейного кристалла по отношению к оси резонатора) соотношение (8.59) определяет связь между (Oi и (02, а вместе с соотношением (8.58а) оно позволяет вычислить обе частоты (Oi и (02. Можно реализовать условия фазового синхронизма как типа I, так и типа 11 (например, e(o, Ow, +бщ, в отрицательном одноосном кристалле), а перестройку можно осуш,ествлять изменением либо наклона кристалла (угловая перестройка), либо температуры (температурная перестройка). В заключение заметим, что если усиление, обусловленное параметрическим эффектом, достаточно велико, то можно обойтись и вовсе без зеркал, а интенсивное излучение на частотах (Oi и (02, происходяш,ее от параметрического шума, можно получить за один проход через кристалл. Это внешне очень похоже на явления суперлюминесценции и усиленного спонтанного излучения, которые рассматривались в разд. 2.7, и иногда (довольно необоснованно) называется суперлюминесцентным параметрическим излучением.  [c.503]

При прохождении сигналов в канале мультипликативные возмущения среды ослабляют случайным образом полезный сигнал и вносят случайные фазовые задержки. В приемной части системы связи сигналы детектируются и декодируются. Фоновая радиация, обусловленная отраженным солнечным светом, звездами, планетами и другими источниками, является внешним шумом по отношению к приемнику это излучение аддитивно комбинируется с внутренним шумом приемника, вызывая случайную эмиссию фотоэлектронов.  [c.19]

Фазовые и частотные системы связи, по-видимому, будут обладать максимальной информационной емкостью, что обусловлено более полным использованием свойства когерентности излучения ОКГ. Считается также, что эти системы относительно менее чувствительны к аддитивным шумам ( по сравнению с системами с модуляцией по интенсивности). Это обстоятельство позволяет ставить вопрос об иопользовапии оптимальных методов приема ЧМ колебаний [61].  [c.158]

Характерной особенностью изображений, восстанавливаемых с синтезированных (как диффузных, так и недиффузных) голограмм, является наличие шума вокруг нулевого порядка дифракции. Появление шума связано с амплитудными и фазовыми искажениями, создаваемыми фотоматериалами, на которых записана голограмма и регистрируется восстанавливаемое ею изображение. Амплитудный шум, обусловленный в основном зернистостью фотоэмульсии, вызывает случайное рассеивание восстанав-ливаюш его светового пучка и восстановленного волнового поля. Фазовый шум обусловлен оптической неоднородностью и деформацией поверхности голограммы и регистрируюш ей фотопленки.  [c.115]

Еще одним эффективным средством борьбы с фазовыми шумами фотопленки оказалось применение иммерсионных жидкостных компенсаторов — иммерсоров, представляющих собой стеклянную кювету с оптически плоскими наружными стенками, заполненную иммерсионной жидкостью, в которую помещается синтезированная голограмма. Кювета устанавливается с помощью специального держателя в схему восстановления. Иммерсия компенсирует колебания толщины пленки, связанные как с неровностью подложки пленки, так и с колебанием плотности серебра проявленной голограммы. Благодаря этому уменьшается рассеяние света, особенно в центре изображения, и повышается общий контраст восстановленного изображения.  [c.115]


Смотреть страницы где упоминается термин Шум фазовый : [c.25]    [c.44]    [c.70]    [c.105]    [c.302]    [c.303]    [c.34]    [c.64]    [c.292]    [c.306]    [c.511]    [c.329]    [c.226]    [c.425]    [c.491]    [c.491]    [c.531]    [c.680]    [c.694]    [c.295]    [c.529]    [c.212]   
Введение в нелинейную оптику Часть2 Квантофизическое рассмотрение (1979) -- [ c.308 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте