Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Время установления молекул

Времени обращение 76 Время установления молекулы 127  [c.239]

Характерное время установления термохимического равновесия — так называемое время релаксации — разное для различных процессов. Так, для достижения равновесного значения энергии поступательного движения молекул достаточно в среднем пяти столкновений частиц воздуха, вращательного — от 10 до 100 столкновений, а для достижения равновесного распределения энергии колебательных движений атомов внутри молекул — порядка 10 столкновений. Хотя воздух при стандартных значениях температуры и давления имеет молекулярную плотность 2,7-10 молекул в см , средняя длина свободного пробега намного превосходит расстояние между соседними молекулами, в итоге зона релаксации, равная произведению скорости течения газа на время релаксации, может оказаться достаточно протяженной.  [c.30]


Связывание молекул воды и электролита в полимере в процессе переноса создает трудности в определении истинных значений коэффициентов диффузии компонентов растворов в полимере. С помощью данных по кинетике десорбции электролита можно рассчитать его коэффициент диффузии, однако наличие связывания может внести в этот расчет определенную ошибку. Расчет коэффициента диффузии электролита по методу стационарного потока раствора электролита также дает заниженное значение D j,, а главное — показывает зависимость коэффициента диффузии электролита от концентрации внешнего раствора. Это тоже результат связывания электролита с водой в процессе переноса, которое оказывает значительное влияние на время установления стационарного потока электролита через полимер, а следовательно, и на время запаздывания.  [c.53]

ДиполЬная поляризация — поворот ( ориентация ) дипольных молекул в полярных диэлектриках. Она принадлежит к числу медленных видов поляризации время установления ее значительно больше, чем время установления ионной поляризации.  [c.27]

Жидкие кристаллы нематического типа применяют благодаря присущему им электрооптическому эффекту динамического рассеяния. Слабое электрическое поле, приложенное к жидкому кристаллу, вызывает выстраивание молекул осями с высокой е параллельно полю. Одпако, если напряжение превысит некоторое пороговое значение, устойчивая доменная структура разрушается, возникает ячеистая структура, сопровождающаяся появлением гидродинамических течений. Прп дальнейшем увеличении напряжения течение в жидкости становится турбулентным, а вещество оптически неоднородным. Жидкий кристалл в таком неупорядоченном состоянии рассеивает свет во всех направлениях. Эффект динамического рассеяния приводит к изменению прозрачности жидкого кристалла под действием электрического поля. Поле может быть как постоянным, так и переменным с низкой частотой (до 10 10 Гц в зависимости от материала). Время установления состояния динамического рассеяния составляет  [c.262]

Следует подчеркнуть, что электрическое поле нельзя считать фактором, вызывающим вращение полярных молекул [Л. 2-2]. Энергия диполя в жидкости при напряженностях, не превышающих пробивную, недостаточна для того, чтобы диполь мог совершать колебания при периодическом изменении поля. В то же время энергия теплового движения достаточна для обеспечения вращения диполя в жидкости. В связи с этим постоянная времени установления поляризации (время релаксации) зависит от энергии теплового движения. При тех частотах и температурах, когда время установления поляризации мало по сравнению с периодом приложенного напряжения, диэлектрические потери, связанные с поляри нацией, весьма малы.  [c.34]


Колебательные, электронные уровни атомов, молекул, ио-нов образуют группу внутренних степеней свободы. Энергия их. возбуждения и энергия химических реакций и ионизации частиц, обычно велики, поэтому возбуждаются и реагируют прежде всего быстрые молекулы за счет потери части энергии поступательных степеней свободы, что, естественно, постоянно нарушает максвелловское распределение. Однако время протекания этих процессов обычно на несколько порядков превосходит время установления максвелловского распределения, которое таким образом непрерывно восстанавливается (с изменением температу-ры Т).  [c.12]

Релаксация этого вида свойственна многоатомным газам, а также неассоциированным многоатомным жидкостям, в которых основными структурными элементами являются несложные молекулы. Когда звуковые волны проходят через такую среду, то во время сжатия молекулы сначала получают энергию как кинетическую энергию движения в направлении волны только после этого энергия перераспределяется между другими степенями свободы за счет столкновений. Аналогично, при расширении энергия передается молекулам сначала от трансляционных степеней свободы. Если для установления равномерного распределения энергии по трансляционным и, вообще говоря, вращательным степеням свободы достаточно нескольких столкновений, то, чтобы изменить распределение энергии по колебательным степеням, необходимо много столкновений, поэтому значительная величина времени релаксации связана с установлением равновесия между степенями, которые быстро приспосабливаются к изменению давления (трансляционными и вращательными), и колебательными степенями. Принято называть внешними трансляционные и вращательные степени свободы и внутренними колебательные степени. В результате этого статическую удельную теплоемкость при постоянном объеме можно представить в виде суммы двух членов  [c.176]

Бушману и Шеферу [393] удалось, повысив точность ультразвукового интерферометра, определить время установления различных собственных колебаний в газах СО , NHз, ЫаО и (СНз)20 по незначительным отклонениям экспериментальной кривой дисперсии от кривой обычного типа. Эти исследования показали также, что колебания, вызываемые соударением, происходящим в направлении оси молекулы, возбуждаются легче, чем колебания, для возбуждения которых требуется удар, перпендикулярный коси.  [c.323]

Распад нестабильных частиц сильно отличается от тех видов разрушения, или распада, которые мы обычно наблюдаем. Вероятность смерти в течение ближайшего часа выше для пожилого человека, чем для молодого бактерия не испытывает деления непосредственно после своего рождения и делится только по истечении определенного времени старый автомобиль сломается скорее, чем новый. Во всех этих случаях вероятность того или иного вида распада зависит, в частности, от предыстории объекта, имеющейся к данному моменту объекты, просуществовавшие дольше, более склонны испытать то или иное разрушение. С другой стороны, бесспорным экспериментальным фактом является то обстоятельство, что вероятность распада элементарной частицы, или ядра любого радиоактивного изотопа, или, наконец, возбужденного атома или молекулы не зависит от продолжительности существования частицы. Свободный нейтрон нестабилен, но длительно существовавший нейтрон ничем не отличается от нейтрона, только что ставшего свободным. Предсказать момент распада заданной нестабильной частицы невозможно. Воспроизводимое значение имеет лишь среднее время жизни, установленное для большого числа частиц.  [c.435]

Универсальное соотношение между спектрами поглощения и люминесценции Степанова. Б. И. Степанов, исходя из самых общих термодинамических соображений, не учитывающих индивидуальных особенностей конкретных молекул, получил универсальное соотношение между их спектрами поглощения и люминесценции. При этом он базировался на представлении, что за время между актами поглощения и люминесценции (за время, меньшее, чем т) успевает установиться равновесное распределение возбужденного электронного состояния, определяемого температурой среды. В этих условиях распределение энергии в спектре люминесценции сложных молекул должно совпадать с распределением энергии в спектре теплового излучения тех же молекул, которое определяется законом Кирхгофа. Установленное на основе этих соображений универсальное соотношение Степанова имеет вид  [c.177]


В газах благодаря большому числу столкновений между молекулами быстро устанавливается равновесное состояние. В разреженной плазме столкновения редки и вероятность установления равновесного состояния меньше, причем она падает с увеличением температуры. Плотная и, в частности,слабо ионизированная плазма должна находиться в состоянии термического равновесия. Разреженная, полностью ионизированная плазма может находиться длительное время в неравновесном состоянии в этой плазме термодинамическое описание состояния непригодно.  [c.229]

В области, где параметры потока претерпевают быстрое изменение, например за ударной волной или в расширяющейся части сверхзвукового сопла, состояние газа может не соответствовать равновесному. Это связано с тем, что для установления равновесия смеси как по составу, так и по распределению энергии между различными степенями свободы молекул нужно конечное время. Такой процесс будет называться термодинамически неравновесным.  [c.30]

На практике с релаксационными эфсректами встречаются во многих случаях. В газах, например, приходится учитывать, что время установления термодинамического равновесия, или что то же самое — время релаксации, существенно зависит от того, какой вид энергии движения молекул участвует в процессе. Для поступательного движения атомов время релаксации определяется отношением длины свободного пробега молекулы газа к средней скорости молекул и оказывается меньше времени релаксации для вращательного движения молекул. В свою очередь, это время меньше времени релаксации для колебательного движения атомов в молекулах, которое меньше времени релаксации для химических реакций между молекулами и т. д.  [c.117]

Дипольно-релаксационная ориентационная) поляризация определяется поворотом и ориентацией диполей в направлении поля и свя-зана с тепловым движением частиц. Дипольные молекулы, находящиеся в хаотическом тепловом движении, ориентируются в направлении действующего внешнего электрического поля, создавая эффект поляризации диэлектрика. При снятии внешнего электрического поля поляризация нарушается беспорядочным тепловым движением молекул. Диполи приобретают самое разнообразное положение в пространстве, и эффект полярного их расположения исчезает. Время установления и нарушения поляризации определяется временем релаксацит дипольных молекул.  [c.7]

Ионная поляризация (С , Q на рис. 1-1, б) характерна для твердых тел с ионным строением и обусловливается смещением упруго-связанных иоиов. С повышением температуры она усиливается в результате ослабления упругих сил, действующих между ионами, Аз-за увеличения расстояния между ними при тепловом расширении. Время установления ионной поляризации около 10 с.. Ципольно-релаксационная поляризация (С .р, рд.р, Гд.р) для <раткости называется дипольной, отличается от электронной и ион-юй тем, что она связана с тепловым движением частиц. Диполь-1ые молекулы, находящиеся в хаотическом тепловом движении, частично ориентируются под действием поля, что и является причи-10Й поляризации.  [c.19]

Предполагалось, и это важно для изложенного выше, что вблизи критической точки при заданных постоянных температуре и давлении в системе могут длительно существовать слабо неравновесные по плотности состояния. Построим простую модель подобной системы. Рассмотрим идеальный газ, состоящий из одиночных молекул е и групп по и таких молекул. Если в начальный момент все и-меры находятся в одной части сосуда (А), а мономеры — в другой части (Б), то при равенстЕв объемной плотности числа мономеров и п-меров давление идеального газа в обеих частях сосуда будет одинаковым, а плотности газа в А и Б должны различаться в п раз. Если время установления равновесия пе е больше характерного времени диффузии в системе, то будет происходить постепенное диффузионное выравнивание плотности. Аналогия этой модели с околокритическим состоянием вещества в том, что вблизи критической точки вещество структурно неоднородно. Динамическое равновесие между молекулярными группами и одиночными молекулами устанавливается медленно. Это равновесие легко смещается от малых внешних воздействий. При переходе двухфазной системы через критическую точку возникает картина, напоминающая обсуждаемую модель.  [c.300]

В 8 гл. VI было показано, что если при температуре 4000° К время установления равновесной концентрации окиси азота в воздухе нормальной плотности составляет 10 сек, то при 2000° К оно равно примерно 1 сек, а при 1000° К имеет колоссальную величину порядка 10 сек, т. е. примерно 30 тысяч лет Однажды образовавшаяся и охлажденная до нормальной температуры окись азота пребывает в воздухе неопределенно долгое время. В действительности, окисленный азот продолжает свое длительное существование в виде двуокиси NO2 (или даже комплексов N2O4, в которые предпочитают объединяться молекулы NO2), так как окись азота весьма быстро реагирует с кислородом воздуха и окисляется до двуокиси. Эта экзотермическая реакция требует очень небольшой энергии активации и легко протекает даже при комнатной температуре (см. 9 гл. VI).  [c.437]

Наиболее быстрым является электронный механизм установления нелинейной добавки к показателю преломления (10" с). Время переориентации анизотропных молекул имеет порядок 10 с. Электрострикцион-ный механизм изменения показателя преломления связан с генерацией в среде акустических волн и имеет характерное время установлешя порядка 10 с. Возможны и другие механизмы изменения показателя преломления под действием падающего излучения лазера, например изменение температуры среды, изменение концентрации молекул или атомов, изменение распределения зарядов в фоторефрактивных кристаллах, таких как ВаТЮз. Эти механизмы имеют еще большее характерное время установления.  [c.189]


В табл. 62 приведены значения времени установления 7 для СО2 при наличии различных посторонних газов при комнатной температуре (по измерениям Иттербека и Маринса [974]). Как видно из этих данных, активирующее влияние легких молекул постороннего газа значительно превышает влияние тяжелых молекул. При повышении температуры время установления уменьшается для всех смесей газов, кроме СО2—Н2 и СОа—Оз, что следует также и из теоретических соображений.  [c.326]

На фиг. 373 показаны результаты измерений в Og Кнудсена и Фрике [1090], подробно исследовавших зависимость поглощения звука в газах с линейными молекулами (СОд, NgO, OS и Sg) от процентного содержания примесей газов Нз, НдО, HgS и паров СНдОН, СдН ОН, gHg Hg. Во всех случаях наблюдалась линейная зависимость частоты / , соответствующей максимальному поглощению, от процентного содержания примеси. В табл. 66 приведены значения смещения частоты при добавлении 1% постороннего газа. По величине этого смещения можно рассчитать для чистого газа. Поскольку / = о/2та (см. выше), эти измерения позволяют оценить также время установления l/k Q и, следовательно, число соударений,  [c.336]

Анизотропия в электрическом поле. Возникновение анизотропии в электрическом поле было обнаружено Керром в 1875 г. и с тех пор широко используется в технике эксперимента. В настоящее время явление Керра хорошо исследовано как экспериментально, так и теоретически. Это оказалось возможным благодаря тому, что эффект наблюдается в веществах, находящихся в жидком и даже газообразном состоянии, а их изучение несравненно проще изучения твердого тела. Схема опыта относительно проста (рис. 3.10). Между двумя скрещенными поляризаторами Pi и / 2 располагают плоский конденсатор. Между пластинами конденсатора помещают кювету с жидким нитробензолом — веществом, в котором изучаемый эффект весьма велик. При включении напряжения происходит поляризация молекул нитробензола и их выстраивание. Так создается анизотропия вещества с преимущественным направлением (оптической осью кназикрис-талла) вдоль вектора напряженности электрического поля. Так же как и при механической деформации, излучение становится эллиптически поляризованным и частично проходит через второй поляризатор, скрещенный с первым, т.е. установленный так, чтобы не пропускать линейно поляризованный свет. Опыт дает Ап = н,, — п = КЕ , где К — некая константа, как правило, положительная. Однако для некоторых веществ К оказывается меньше О (это значит, что /г > п , т.е. образуется отрицательный квазикристалл).  [c.122]

Данное определение однозначно отличает люминесценцию от всех других видов свечения и дает возможность надежного экспериментального установления люминесцентного характера свечения. Для этой цели не требуется производить сложные определения времени свечения. Достаточно убедиться, что оно не слишком мало. А для этого можно провести опыты по тушению предполагаемой люминесценции подходящим тушителем. Для тушения необходимо, чтобы длительность возбужденного состояния была заведомо больше среднего времени между соударениями с молекулами тушителя. Время это при не слишком малых концентрациях возбужденных молекул и тушащего вещества не меньще 10" —10" с. Поэтому нелюминесцентные, т. е. чрезвычайно быстро прекращающиеся (т < 10" с) виды свечения не успевают испытать тушение.  [c.761]

Аминокислоты составляют своеобразный белковый алфавит. По отношению к молекулам воды их радикалы могут быть гидрофобными и гидрофильными. Последние легко образуют водородные или ионные связи. Структуры белков различаются по иерархии структур на первичную, вторичную, третичную, четвертичную. Первичной структурой называют химическую формулу последовательности аминокислот в цепях, называемых полипептидными. Вторичной структурой называется способ свертывания полипеп-тидной цепи в определенную конфигурацию, которая стабилизируется водородными связями. Важное значение при определении вторичной структуры имеют установленные рентгенографически длины связей и углы, характерные для звеньев полипептидной цепи. Основанный на этой информации геометрический подход в последнее время нередко заменяется энергетическим, использующим различные потенциалы межатомного взаимодействия. Существуют два типа вторичной структуры растянутая р-конфигура-ция и спиральная а-конфигурация. В р-конфигурации полипептид-ные цепи располагаются параллельно или антипараллельно, период цепи составляет 6,5—7,34 А, расстояние между цепями — 4,5—5,0 А. Важнейшей особенностью а-спиральной формы цепи является наличие винтовых осей нецелочисленного порядка. Шаг а-спирали 5,4 А, в ней на 5 оборотов приходится 18 остатков, и полный период равен 27 А. Толщина спирали около 10 А. Существуют и близкие к а-спирали конф ормации. а-Спираль всегда правая, поскольку ее левая форма оказалась энергетически невыгодной.  [c.176]

Идентификация и установление структуры многоатомных органич. соединений. Электроны с энергией неск. десятков эВ способны не только выбить электрон из исходной молекулы, но и возбудить образовавшийся молекулярный ион до энергии, к-рая достаточна для ого распада на ионы-оскодки (диссоциативная ионизация). Набор образовавшихся ионов представляет собой молекулярный масс-спектр исходной молекулы. Напр., масс-спектр метана состоит из ионов СН . (48 /о), СН+з (39 /о), СН+, (7%), СН+(4,5 /о), С+ (1,5 /о). Масс-спектр вещества является его характеристикой и несёт инфор.чацию о мол, массе и структуре исходной молекулы. В случае простейших молекул для описания диссоциативной ионизации используют метод потенциальных кривых (потенциальных поверхностей) в сочетании с принципом Франка — Кондона. Теории диссоциативной ионизации для многоато.чных молекул пока нет. Предполагается, что диссоциативная ионизация происходит позднее процесса ионизации, после того как энергия возбуждения молекулярного иона успела (за время т 10 —10" с) распределиться по степеням свободы. Это позволило полуэмпирич. путём рассчитать молекулярные масс-спектры нек-рых веществ.  [c.57]

Другой механизм влияния электрич. поля на оптич. свойства вещества связан с определ. ориентацией в поле молекул, обладающих постоянным дипольным моментом или анизотропией поляризуемости. В результате у первоначально изотропного ансамбля молекул появляются свойства одноосного кристалла. Характерное время ориентационных процессов колеблется от 10 —10 с для газов и чистых жидкостей до 10 с и больше для коллоидных растворов, молекул, аэрозолей и т. п. Особенно сильно выражен ориентационный эффект в жидких к р и с т а л л а X (время релаксации 10" с), в них наблюдается целый ряд электрооптич. эффектов. В твёрдых телах при наложении электрич, поля наблюдается появление оптической анизотропии, обусловлен, установлением различий в ср. расстояниях между частицами решётки вдоль и поперёк поля (стрикционный эффект). Как ориентационный, так и стрикционный эффекты не только дают существ, вклад в эффект Керра, но и приводят к изменению интенсивности и деполяризации рассеянного света под влиянием электрич, поля (т. н. дитин дализм).  [c.589]

В последнее время ряд корреляционных соотношений установлен не только между способностью некоторых классов органических веществ тормозить чисто коррозионный процесс и сг-константами, но и другими практически важными характеристиками торможением наводороживания, коррозионного растрескивания, механическими характеристиками и т. п. [76]. В [89] показано, что между логарифмом коэффициентов торможения наводороживания и коррозионного растрескивания высокопрочных сталей в серной кислоте и сг-константами Гаммета, существует линейная зависи.мость с увеличением электроакцепторных свойств за.местителя в молекуле фосфониевой соли эффективность торможения наводороживания и коррозионного растрескивания возрастает (рис. 20).  [c.48]



Смотреть страницы где упоминается термин Время установления молекул : [c.130]    [c.191]    [c.8]    [c.356]    [c.187]    [c.63]    [c.163]    [c.143]    [c.69]    [c.183]    [c.301]    [c.322]    [c.324]    [c.338]    [c.99]    [c.548]    [c.226]    [c.94]    [c.111]    [c.232]    [c.346]    [c.697]    [c.194]   
Введение в нелинейную оптику Часть1 Классическое рассмотрение (1973) -- [ c.127 ]



ПОИСК



1 кн. 16 — Установление

Время установления



© 2025 Mash-xxl.info Реклама на сайте