Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пленки пассивные и коррозионное растрескивание

Часто считают, что коррозионная среда, вызывающая коррозионное растрескивание, должна обладать весьма специфическими свойствами. Одиако перечень таких сред, вызывающих растрескивание различных сплавов, продолжает увеличиваться и понятие специфичность раствора не является сейчас таким узким, как это было даже десять лет тому назад. Тем не менее ясно, что коррозионная среда, вызывающая растрескивание, специфична в том смысле, что не все возможные коррозионные среды способствуют растрескиванию и объяснения специфичности коррозионных сред обычно базируются на электрохимии коррозионного растрескивания. В общих чертах ясно, что необходимы сильно действующие растворы для поддержания системы на границе пассивно-активного состояния, так как сильно агрессивные условия будут вызывать общую или питтинговую коррозию, в то время как в совершенно пассивном состоянии коррозионное растрескивание происходить не будет. Относительная инертность всех подвергаемых коррозионному воздействию внешней среды поверхностей (за исключением вершины трещины) иногда является следствием наличия пленки, образуемой благородными металлами, входящими в состав сплавов, но для основного большинства промышленных сплавов пассивность поверхностей, подвергаемых воздействию коррозионных сред—результат присутствия окисных пленок иа поверхиости металлов. Поэтому ясно, что для коррозионного растрескивания сплавов с высоким сопротивлением общей коррозии (сплавы на основе алюминия, титаиа, аустенитные нержавеющие стали, на которых легко образуется защитная пленка) необходимо воздействие агрессивных ионов (таких, как галоиды). Для коррозионного растрескивания металлов с низким сопротивлением общей коррозии, таких как углеродистые стали или сплавы на основе магния, необходимо присутствие коррозионной среды, которая сама по себе являлась бы частично пассивирующей. Таким образом, углеродистые стали могут быть чувствительными к растрескиванию в растворах анодных ингибиторов,  [c.236]


Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

Из всех известных в настоящее время материалов титан и его сплавы относятся к числу наиболее стойких к морским средам при обычных температурах. Тонкая окисная пленка, образующаяся на поверхности титановых сплавов, обеспечивает полную защиту металла от коррозии. Разрушение этой пассивной пленки происходит только в специальных условиях. Несмотря на очень высокую общую стойкость титана, все же существует несколько коррозионных проблем, связанных с его использованием в морских условиях [68] питтинговая коррозия, наблюдающаяся в щелевых условиях при недостатке кислорода и температуре морской воды выше 120 °С коррозионное растрескивание высокопрочных титановых сплавов при наличии поверхностных дефектов на металле, к которому приложено растягивающее напряжение коррозионное растрескивание в солях при нагреве выше 260 °С. Эффективными мерами борьбы с этими видами преждевременного разрушения титановых сплавов являются легирование и термообработка.  [c.116]


Уже первые коррозионные испытания титановых материалов включали экспозицию нагруженных образцов в морской воде и атмосфере. На основании результатов, полученных для простых U-образных образцов или образцов, нагруженных в 4 точках, можно сделать вывод, что пассивная пленка на гладкой поверхности титана или его сплава обеспечивает полную защиту металла в морских средах даже при высоких уровнях напряжений. Полагали, что отсутствие коррозионного растрескивания под напряжением связано с невосприимчивостью поверхности титана к местной коррозии, в частности к питтингу (питтинги могут играть роль концентраторов напряжений, ускоряя образование трещин).  [c.122]

Хлоридное растрескивание металлов происходит при повышенных концентрациях ионов хлора в водных средах. Это растрескивание связано с нарушением однородности пассивной пленки металла и образованием в ней точечных дефектов (питтингов) под действием хлорид-ионов. Анодом в таких случаях выступает дно таких дефектов, а катодом - окружающие области металла. В результате происходит постепенное углубление коррозионных язв, которое продолжается вплоть до окончательного механического разрушения элемента конструкции. Хлоридное коррозионное растрескивание вызывают морская вода, растворы хлоридов натрия и калия, кислые растворы.  [c.348]

Добавки, легко повышающие редокс-потенциал раствора, например небольшие количества бихроматов, ускоряют коррозию, так как они немного увеличивают потенциал большие количества таких добавок, поднимающие потенциал выше 250 мв, надежно пассивируют также границы зерен и залечивают дефектные места в пленках, так что коррозия резко уменьшается. Когда в результате повышенной концентрации ионов хлора устраняется пассивность поверхности зерен, склонность к коррозионному растрескиванию также уменьшается [115]. Пассивирующее действие  [c.42]

Рассматривая в совокупности изложенные выше представления о соответствующем балансе между электрохимической активностью и пассивностью, можио считать, что локализованная коррозия возникает различными путями и является следствием проявления ряда различных механизмов, вызывающих коррозионное растрескивание. Если структура и состав сплава таковы, что в нем имеются непрерывные области сегрегации или выделений (обычно по границам зерен), отличающиеся по электрохимическим характеристикам от матрицы, тогда потенциальная чувствительность к межкристаллитной коррозии (МКК) может быть под действием механических напряжений реализована в межкристаллитное разрушение. В том случае, когда предварительно существующие активные участки находятся в пассивном состоянии, тогда деформация может активизировать их за счет разрушения защитной пленки и, возможно, за счет растворения возникающих ступенек сдвига, обладающих повышенной электрохимической активностью. В последнем случае решающая роль напряжений или деформации проявляется для таких сплавов, которым присуща недостаточная пластичность и склонность к хрупкому разрушению. Энергия, необходимая для хрупкого разрушения, может быть уменьшена за счет или адсорбции специфических компонентов, или образования хрупких фаз в вершине трещины, или внедрения водорода в решетку впереди вершины развивающейся трещины. Предполагают, что эти три различных механизма коррозионного растрескивания должны рассматриваться как протекающие непрерывно с постепенным переходом от одного механизма к другому, поскольку постепенно над коррозионным процессом начинают преобладать процессы, обусловленные действием напряжений или деформации. Переход от одного механизма к другому может быть следствием изменения или характеристик самого сплава, или условий внешней среды.  [c.231]

Среды СО2—СО—Н2О способствуют транскристаллитному коррозионному растрескиванию [7] увеличение количества СО (некоторое количество которого должно обязательно присутствовать для стимулирования растрескивания) приводит к уменьшению времени до разрушения и снижению пороговых напряжений [31]. Это можно объяснить действием СО в качестве ингибитора коррозии в углекислоте при увеличении концентрации СО эффективность образования пассивной пленки повышается, что и обусловливает повышение чувствительности к коррозионному растрескиванию по механизму разрушения пленки под действием напряжений. Сообщается, что влажный H2S вызывает растрескивание нагартованной проволоки из высокоуглеродистой стали, при напряжении составляющем всего 40% от величины разрушающего напряжения. Исхо-  [c.250]


Такое возражение, однако, не является фатальным, поскольку в продажном алюминии примесь железа приводит к увеличению скорости коррозии и можно привести следующий довод, что если бы можно было остановить прохождение катионов железа через окисную пленку на алюминии, то продажный (технический) алюминий оказался бы таким же стойким, как и самый чистый. Такой довод, однако, требует экспериментального подтверждения. Исследования, проведенные в Польше, показали, что жирные кислоты являются ингибиторами коррозионного растрескивания стали в горячем концентрированном растворе азотнокислого аммония. Это можно отнести вряд ли за счет катализа, поскольку в горячем окислительном растворе, обладающем кислой реакцией, превращение закисных солей железа в окисные происходит в действительности без катализатора. Более вероятным является связь этого явления с тем фактом, что поляризационные кривые в присутствии жирных кислот, приведенные в польском исследовании, имеют больший угол наклона, причем угол наклона постепенно увеличивается с увеличением длины цепочек углерода разность потенциалов, необходимая для получения заданной плотности тока как на катоде, так и на аноде, увеличивается линейно с увеличением числа атомов углерода в цепи плотность тока, необходимая для смещения потенциала до потенциала пассивного состояния меньше в присутствии жирных кислот, чем в их отсутствии. Если принять, что истинная поляризационная кривая на голом железе одна и та же во всех случаях и что действие адсорбированных цепочек жирной кислоты заключается в уменьшении площади непокрытой поверхности так, что реальная плотность тока превышает видимую, то результаты не  [c.503]

Один из возможных путей учета совместного влияния различных электрохимических факторов состоит в определении скорости репассивации сплавов данной системы в рассматриваемой среде. Выход ступеньки скольжения у вершины трещины может привести к повреждению пассивной пленки и последующему локальному растворению, или питтингу, а также к ускорению коррозионных реакций, в ходе которых выделяется водород. Скорость репассивации, таким образом, является мерой интенсивности таких процессов. Отметим, что планарное скольжение сопровождается образованием более крупных и более многочисленных ступенек скольжения, оказывая таким образом влияние на КР. Как было показано [99], скорость репассивации во многих случаях хорошо коррелирует с параметрами КР. По такой корреляции, следовательно, можно судить о взаимодействии и суммарном влиянии различных электрохимических факторов, хотя сама по себе она не позволяет определить механизм растрескивания.  [c.123]

Титан отличается прекрасной коррозионной стойкостью в дымящейся красной и белой азотных кислотах. Однако исследования коррозии титана под напряжением в красной азотной кислоте показали, что она вызывает коррозионное растрескивание. При полном погружении образцов растрескивание наблюдалось через 3 —16 ч, а при выдержке в парах— через несколько недель. Иногда при открывании колб происходили взрывы [ 57]. Исследование условий пирофорной реакции титана в красной дымящейся кислоте показало, что основную роль в возникновении взрывов играет соотношение концентрации содержания воды и N02-Установлено, что дымящаяся азотная кислота с содержанием менее чем 1,34 % Н2О и более 6 % N 2 Способна вызвать пирофорную реакцию при ударе и ином ее возбуждении. В данных условиях присущая титану защитная пассивная пленка при пробегании коррозионной трещины нарушается достаточно быстро. Непосредственный контакт азотной кис-лрты с обнаженной поверхностью титана. вызывает бурную реакцию окисления.  [c.52]

Как было показано выше, появление в структуре сплава фаз или сегрегаций легирующих элементов (или примесных атомов), обладающих более отрицательным потенциалом, чем матрица, приводит после нарушения пассивности к созданию более отрицательного компромиссного потенциала и усилению анодного тока. Скорость репассивации активной поверхности замедляется. Пример этого—сплав ВТ5-1, состаренный при 500°С в течение 10—100 ч. Вязкость разрушения в коррозионной среде этого сплава в состаренном состоянии 40,3 — 46,5 МПа /м. Излом темноюерый— характерный для коррозионного растрескивания. Однако достаточно этот же сплав подвергнуть закалке с 900—1000°С, обеспечивающей скорость охлаждения в интервале 400—600°С более 50 град/мин, как сплав становится нечувствительным к коррозионному растрескиванию. Величина вязкости разрушения поднимается до 93 — 108,5 МПа y/lA. Излом образцов становится светлым, как у металла, нечувствительного к коррозионному растрескиванию. В этом случае за счет устранения в структуре сегрегатов или упорядоченного а-твердого раствора (по алюминию) снижается величина анодного тока, уменьшается анодное растворение, создаются более благоприятные условия для репассивации поверхности после нарушения защитной пленки, в результате чего уменьшается возможность проникновения и диффузии водорода.  [c.71]

Нержавеющие стали в целом находят весьма ограниченное применение в морских условиях. Успешное их применение основывается на контроле окружающей среды с целью поддержания пассивности металла пли же подразумевает защитные меры, препятствующие местной коррозии. Нержавеющие стали обычно стошш в морских атмосферах, где на от крытой незащищенной поверхности сохраняется пассивная пленка. Благоприятны для поддержания пассивности и условия в быстром потоке морской воды. В спокойной морской воде причиной разрушения металла часто является местная коррозия, в частности ппттинг. Наблюдается также коррозионное растрескивание под напряжением. Однако прп правильном выборе типа сплава, а также режимов упрочнения п старения высокопрочные нержавеющие стали стойки в морских атмосферах.  [c.57]


Поскольку коррозионная стойкость алюминия и его сплавов опре-деляетс я сохранностью пассивной окисной пленки, то эти материалы обычно более стойки в таких условиях, где поверхность металла находится в контакте с хорошо аэрированной морской водой или атмосферой. Многие алюминиевые сплавы, особенно высокопрочные, подвер-женны локальному разрушению, принимающему форму питтииговой, щелевой или расслаивающей коррозии, а также склонны к коррозионному растрескиванию под напряжением.  [c.130]

Ряд исследователей [111,70 111,75] считает, что механические напряжения способствуют разрушению защитной окисной пленки на металле и тем самым интенсифицируют коррозионный процесс. Следует, однако, заметить, что подобные представления теряютсилу, если рассматривать коррозионное поведение нержавеющей стали с точки зрения адсорбционной теории пассивности или теории модификаций [111,76]. Как было показано Л. В. Рябченковым [111,77] и другими исследователями [111,70 111,72], коррозионное растрескивание связано с электрохимическими процессами. Наличие механических напряжений способствует возникновению анодных участков и интенсификации анодного процесса. В связи с этим наложение поляризующего тока должно существенным образом влиять  [c.140]

Как уже указывалось выше, явление коррозионного растрес- кивания аустенитных нержавеющих сталей в растворах хлоридов рассматривается двояко во-первых, с точки зрения воздействия ионов хлора и напряжений на защитные свойства пассивной пленки, образующейся на поверхности металла, и во-вторых, с точки зрения распада аустенита под воздействием напряжений и активного растворения образующейся при этом а-фазы в растворах, содержащих ионы хлора. Оставаясь в рамках первого направления, трудно объяснить интенсификацию процесса коррозионного растрескивания при наличии в растворе кислорода. Ведь с точки зрения пленочной теории пассивности присутствие кислорода в растворе должно способствовать пассивации металла и увеличению защитных свойств, пленки. С этих же позиций непонятно отсутствие влияния механических напряжений и хлоридов на скорость катодного процесса ионизации кислорода. Если ионы хлора и напряжение в металле способствуют разрушению пассивной пленки, то оба эти фактора должны изменять скорость и анодного, и катодного процессов. Ниже будет показано, что напряжения не влияют на скорость катодного процесса в растворах хлоридов и других анионов. Об отсутствии влияния напряжения на скорость катодного процесса на сталях 18-8 и 18-10 в кипящем растворе насыщенного хлористого магния указывали Т. П. Хор и Ж- Г. Хайнес [111,133]. Сточки зрения пленочной теории, увеличение стойкости сталей к коррозионному растрескиванию-трудно увязать с ростом содержания никеля в них и практически невозможно объяснить, почему аустенитная нержавеющая сталь . практически одинаковая по составу (особенно по хрому и никелю), но в силу тех или иных причин становится магнитной, является значительно более стойкой к коррозионному растрескиванию, нежели та же сталь, не обладающая магнитными свойствами [111,12  [c.159]

Отсутствие значительной равномерной коррозии и уменьшения потенциала в период зарождения и распространения коррозионной трещины указывает на то, что коррозионное растрескивание возможно лишь при наличии на поверхности металла активных и пассивных участков. При этом переход металла из пассивного состояния в активное может произойти вследствие воздействия на металл как механических или тепло механпческих (об-разованпе менее благородных структурных составляющих 1И разрушение пленок при деформации), так и химических факторов (воздействие ионов хлора, концентрированных щелочей и т. п.).  [c.178]

Введение в сталь никеля способствует не только улучшению механических свойств вследствие аустенизации структуры, но и облегчает пассивацию и повышает устойчивость пассивного состояния, в том числе в средах, провоцирующих развитие таких локальных коррозионных процессов как питтинговая и щелевая коррозия. Повышение коррозионной стойкости сталей вследствие легирования их никелем не связано с изменением состава и свойств пассивирующей пленки — никель в составе пассивирующих пленок не обнаружен. Недостатком хромоникелевых аустенитных сталей является их низкая стойкость портив коррозионного растрескивания, минимум которой приходится на наиболее широко распространенные стали типа 18 r-8Ni. Более 70% всех производимых нержавеющих сталей являются сталями аустенитного класса, содержащими > 17% хрома и свыше 10 % никеля.  [c.188]

В отличие от коррозионного растрескивания коррозионную усталость /КУ/ можно классифицировать как вид коррозионно-механического разрушения, которое происходит при воздействии на металл циклически меняющихся напряжений в коррозионной среде Ll2-15j. Процесс развития коррозионно-усталостных трещин, имея много общего с развитием трещин при статических нагрузках, вместе с тем обладает рядом особенностей, накладываемых динамическим характером напряжений. Поскольку большинство окислов металлов представляет из себя твердые ионные кристаллы, не пластичны и имеют высокий модуль упругости, вероятность разрушения окисной пассивной пленки при динамических нагрузках весьма высокая. В этих условиях интенсифицируется протекание электрохимических процессов. В зависимости от уровня и частоты приложенных механических напряжений выделяют малоци ло вую к р 0 имную ус галом , характеризуемую высоким уровнем напряжений, близких к пределу текучести или превышающих его и изменяющихся с низкой частотой обычно до 50 циклов/мин.  [c.8]

В щелочных растворах углеродистая сталь легко пассивируется анодной поляризацией в широком интервале концентраций и температур. Поверхностная пленка обычно состоит из магнетита (Рез04) при низких потенциалах в области устойчивой пассивности и геманита (РедОз) при более высоких потенциалах. Как уже сообщалось в первой главе, использование анодной защиты прежде всего направлено на предотвращение коррозионного растрескивания. Плотности защитных токов обычно велики, и анодная защита в чистых щелочах не дает большого эффекта. Так, используя анодную защиту, можно уменьшить скорость коррозии углеродистой стали в 33%-ном растворе NaOH при 100°С с 0,7 до 0,5 мм/год [98].  [c.69]

В литературе выделяют два вида коррозионного растрескивания под напряжением водородное и анодное. Анодное коррозионное растрескивание под напряжением выявлено как у не легированных, так и у высоколегированных аустенитных сталей. Необходимая предпосылка для этого вида растрескивания - наличие или образование в коррозионной среде защитного пассивного слоя (пленки), локальное разрушение которого можно рассматривать как причину появления трещин. При этом характер трещин может быть как транскристаллит-ным, так и межкристаллитным (межзеренным).  [c.292]


Фосфор, адсорбированный на границе зерна, с одной стороны, повышает скорость растворения границ, а с другой — за счет адсорбционного вытеснения пассивирующей примеси (углерода) и легирования окислов фосфором уменьшает скорость пассивации границ. В сплаве Ре — Р — С скорость пассивации в вершине трещины, зависящая от соотношения концентраций фосфора и углерода на границе зерна, вь(ше, чем в сплаве Ре — Р. а это означает, что при одинаковой скорости анодного растворения треи 1ина будет более острой, локализованной по границам зерен. В безуглеродистом сплаве Ре — Р из-за меньшей скорости пассивации вершина трещины растравливается "вширь", поэтому скорость коррозионного растрескивания меньше, чем в сплаве Ре — Р — С. Когда высокая скорость анодного растворения обеспечивается благодаря механо-химическому эффекту при образовании дислокационных ступенек в вершине трещины в процессе пластической деформации, влияние фосфора на скорость растворения может оказаться несущественным. Вместе с тем, повышение стабильности пассивного слоя в сплавах с углеродом должно затруднять образование зародышевых микротрещин-питтингов на границах зерен, причем примесь фосфора, депассивирующая пленку [ 205 ], вероятно ускоряет этот процесс в сплаве Ре — Р — С по сравнению со сплавом Ре С и в сплаве Ре — Р по сравнению с чистым железом.  [c.169]

Железо и углеродистые стали в холодных растворах щелочи проявляют удовлетворительную коррозионную стойкость благодаря образованию гидроксид-ных пленок, обладающих защитными свойствами. В концентрированных растворах NaOH при повышенных температурах углеродистые стали склонны к коррозионному растрескиванию. Присутствие хлоридов и хлората в электролитических щелоках усиливает их коррозионную активность. Легирование сталей хромом, никелем и молибденом способствует заметному повышению пассивного состояния сплавов в широком интервале температур и концентраций щелоков.  [c.103]

Предложен возможный механизм влияния переменного тока яа ускорение коррозионного растрескивания за счет активации локальных неоднородностей пассивных пленок, обладающих полупроводниковыми свойствами, вследстше чего растет необратимость катодного и анодного процессов.  [c.128]

Если распространение трещины происходит за счет растворения активной вершины трещины, когда стенки трещины оказываются пассивными из-за наличия на них окисной пленки, то сохранение вершины трещины свободной от пленки будет зависеть не только от электрохимических особенностей системы, но также и от скорости, при которой исследуемый металл в вершине трещины подвергаетси пластической деформации. Таким образом, не напряжения сами по себе, а скорость деформации, которая ими вызываетси, является определяющей. Ясно, что при достаточно высоких скоростях деформации может скорее иметь место вязкое разрушение, чем электрохимическое растворение, в результате которого происходит коррозионное растрескивание. По мере того, как скорость деформации снижается, снижается и скорость распространения коррозионного растрескивания. Дальнейшее снижение скорости деформации будет в конечном счете приводить к положению, когда скорость, при которой за счет деформации образуются новые (свежеоткрытые)  [c.238]

Коррозионная стойкость таитала связана с наличием на его поверхности тонкой сплошной пленки пятиокиси ТазОб. В целом ряде очень агрессивных сред металл пассивируется и становится почти таким же инертным, как золото или платина. В предложенной Пурбэ [5] таблице термодинамической устойчивости тантал следует за цинком и имеет номер 34 (номер 1 имеет золото). В то же время в таблице практической устойчивости тантал благодаря своей пассивной окисной пленке располагается непосредственно за родием (номер 1) и опережает золото (номер 4). Окисная пленка на тантале обладает хорошей адгезией и, по-вндимому, не является пористой. Согласно некоторым данным, на границе раздела окисел — металл образуется слой окисей, устойчивых до 425 С. При нагреве выше этой температуры устойчива только пятиокись, поэтому внутреннее напряжение (создаваемое металлом), возникающее в окисле в ходе его превращения, приводит к растрескиванию и отслаиванию защитной пленки.  [c.205]

Коррозионные процессы в щелочной среде развиваются следующим образом. Углеродистая сталь в щелочном растворе покрывается защитной пленкой продуктов коррозии (окислов), которые затрудняют водородную деполяризацию. При pH = 9,5 и достаточном количестве кислорода образуется пассивный слой из гематита РегОз, а при отсутствии кислорода из магнетита Рез04. Эти. продукты не растворимы, поэтому в растворах до pH = 12 сталь разрушается в допустимых пределах и считается вполне устойчивой. При повышении концентрации, особенно при высокой температуре, защитный слой разрушается и углеродистая сталь интенсивно корродирует. Разрушение углеродистой стали, находящейся под напряжением, в концентрированных растворах носит межкристаллитный характер. В горячих растворах углеродистая сталь подвергается растрескиванию, это явление называют щелочной хрупкостью.  [c.545]


Смотреть страницы где упоминается термин Пленки пассивные и коррозионное растрескивание : [c.14]    [c.154]    [c.28]    [c.114]    [c.83]    [c.40]    [c.102]    [c.237]    [c.238]    [c.239]    [c.275]   
Защита от коррозии на стадии проектирования (1980) -- [ c.233 ]



ПОИСК



Коррозионное растрескивани

Коррозионное растрескивание

Пассивная пленка

Пассивность

Растрескивание



© 2025 Mash-xxl.info Реклама на сайте