Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алмазное Точность обработки

Кроме указанных выше способов высокую точность обработки можно получить с помощью тонкого (алмазного) обтачивания и растачивания и тонкого шлифования на специально подготовленных станках.  [c.65]

Тонкое точение производится на быстроходных станках с числом оборотов шпинделя в минуту от 1000 до 8000 и в некоторых случаях выше, в связи с чем к станкам предъявляются особые требования в отношении точности, жесткости, вибрации и устойчивости, а также зазоров шпинделя в подшипниках. При соблюдении этих требований алмазным точением достигаются точность обработки 2-го класса и выше и 8—10-й классы шероховатости поверхности.  [c.189]


Обеспечение требований к точности обработки неразрывно связано с состоянием инструментального хозяйства, с усовершенствованиями измерительного инструмента и контрольных приспособлений, расширением области применения автоматизированных средств. Входит в практику изготовление некоторых калибров, вставок к ним, наконечников универсального инструмента из твердых сплавов. Износостойкость пробок может быть значительно повышена также за счет алмазного выглаживания и вибрационного обкатывания.  [c.8]

Выхаживание, т. е. обработка без врезания (без поперечной по> дачи), способствуя повышению точности обработки и снижению шероховатости поверхности, может играть и отрицательную роль снимая слои с цветами побежалости, маскирует прижоги, затрудняя их визуальное определение, а также выводит на поверхность слои, ослабленные отпуском. Все более важное место в окончательной обработке деталей и инструмента занимают алмазное и электролитическое шлифование.  [c.29]

Большее внимание следует уделять вопросам качества механической обработки, в первую очередь финишным опера-циям. Широкое внедрение алмазно-абразивной обработки, а также развитие электрофизических и электрохимических методов позволяют значительно ускорить проведение и повысить качество финишных операций, обеспечивающих получение необходимой шероховатости поверхности и точности обработки. Для тонкостенных деталей имеет значение применение методов финишной обработки с минимальной силой, воздействующей на обрабатываемое изделие. Таким требованиям удовлетворяют электрохимическая, ультразвуковая, гидроабразивная и другие виды обработки. Наряду с финишной обработкой, осуществляемой путем удаления слоя металла, следует более широко применять методы тонкой пластической деформации, при которых точность формы и требуемое состояние поверхности изделия достигаются уплотнением наружных слоев металла. Тонкое пластическое деформирование позволяет получить не только необходимую макро- и микрогеометрию поверхности, но и повысить износостойкость и создать благоприятные напряжения, способствующие в ряде случаев повышению эксплуатационных свойств машин.  [c.5]

Исключительно важное значение инструмент имеет в повышении технического уровня и качества выпускаемых машин и другого оборудования. Так, например, внедрение алмазного инструмента позволило значительно повысить точность обработки и параметры шероховатости поверхности. Уровень автоматизации и непрерывности производства увеличится почти в 1,5 раза, производительность труда на 20—45% и экономическая эффективность в 2 раза по сравнению с ранее применяемыми шлифовальными кругами. Одновременно в 1,5—2 раза снизилась стоимость инструмента. Следовательно, организация производства высококачественного инструмента является важной производственной и экономической задачей, поскольку от успешного ее решения зависит повышение эффективности производства.  [c.314]


В случае особо высоких требований к точности обработки (1-й класс точности) окончательная обработка этих элементов детали должна выполняться после автоматической линии на шлифовальных, алмазно-расточных и других высокоточных станках, в том числе станках с программным управлением, оснащенных системами автоматического регулирования размеров. Эти станки нужно устанавливать в цехе, где имеется постоянная температура.  [c.249]

Износ алмазно-металлических брусков при обработке деталей из чугуна и закаленной стали меньше абразивных в 150—250 раз. Весьма, малый износ алмазов позволил уменьшить в 2—5 раз высоту режущей части бруска, соответственно уменьшить величину радиального хода брусков в пазах хонинговальной головки, значительно повысить точность обработки и надежность работы хонинговальной головки.  [c.649]

Характеристику алмазного круга выбирают в зависимости от способа и режимов обработки, формы и размеров обрабатываемых поверхностей, требуемой чистоты и точности обработки, типа станка, способа охлаждения. При работе без охлаждения снижается производительность и в 2 раза возрастает расход алмаза.  [c.207]

Алмазный круг выбирают по ширине и высоте алмазоносного кольца (рис. 17). Ширина кольца определяется условиями работы круга — врезанием или напроход. Широкие рабочие поверхности алмазоносного кольца применяют при работе напроход, а при врезании ширина поверхности кольца не должна быть больше высоты обрабатываемой поверхности. В первом случае обеспечивается более высокая точность обработки и равномерный износ круга.  [c.207]

Следует иметь в виду, что однокристальные алмазы на операциях правки кругов в зависимости от точности обработки и форм обрабатываемых поверхностей могут быть заменены до 80—90% алмазно-металлическими карандашами и алмазными роликами.  [c.139]

При использовании сверхтвердых резцов (К 01, К 10, К 20 и др.) оптимальными являются следующие условия угол основной заточки резца 0-6°, задний угол заточки резца 8 - 14°, скорость резания 20 -150 м/мин, глубина резания 0,1 - 0,5 мм, подача суппорта 0,05 -0,2 мм/оборот. При использовании алмазных резцов оптимальная скорость резания составляет 100 - 300 м/мин, глубина резания 0,05 -0,3 мм, подача суппорта 0,02 — 0,1 мм/об. По мере уменьшения скорости подачи суппорта можно стабилизировать процесс резания и получать хорошее качество поверхности обрабатываемого изделия. Увеличение глубины резания приводит к сильному износу режущей кромки резца. При обработке на токарном станке крупногабаритных изделий возникает проблема точности обработки, на которую необходимо обращать внимание.  [c.116]

Для обтачивания заготовок из цветных металлов и сплавов, а также пластмасс и других неметаллических материалов применяют алмазные резцы. Вследствие очень высокой стойкости алмазные резцы способны долгое время работать без подналадки и обеспечивать высокую точность обработки.  [c.278]

При алмазно-абразивной обработке на точность размеров и формы деталей влияют точность станка, жесткость технологической системы, глубина резания и число выхаживаний на волнистость - жесткость технологической системы, точность станка, число выхаживаний на параметры шероховатости - зернистость круга, подача и число выхаживаний на физико-механические свойства - СОТС, твердость круга и глубина резания.  [c.332]

Однако обработка материалов резанием сохранит доминирующее положение (по объему затрат, энергоемкости, производительности, достигаемой точности обработки, гибкости и ряду других признаков) [3,5,б] и будет развиваться в направлениях интенсификации режимов резания, расширения областей щ>именения алмазно-абразивной обработки и использования комбинированных методов обработки резанием. Так, если несколько лет назад средняя скорость резания составляла 105 м/мин, то  [c.3]

Ультразвуковая обработка без абразива. Применение вращающегося инструмента, шаржированного алмазной крошкой, привело к возрастанию скорости обработки и повышению точности обработки по сравнению с классической схемой ультразвуковой обработки с абразивом. Благодаря тому, что инструмент вращается, непосредственное сверление отверстий некруглой формы невозможно. Однако путем перемещения инструмента по требуемой траектории, как это происходит, например, при фрезеровании концевой фрезой, можно получить отверстие заданной формы. Точность при этом составляет примерно 0,013 мм при обработке стекла и керамических сплавов. В стекле отверстие диаметром 9,5 мм и глубиной 9,5 мм сверлится в течение 1 мин.  [c.311]


При алмазном шлифовании можно получить точность обработки до 1-го класса включительно и чистоту обработанной поверхности до 12-го класса.  [c.363]

Алмазные круги являются незаменимыми для шлифования, заточки и доводки инструментов, оснащенных твердым сплавом, и деталей. Эффективность их во много раз выше по сравнению с кругами из зеленого карбида кремния. Они обеспечивают высокую точность обработки и высокий класс чистоты обрабатываемой поверх-  [c.78]

Алмазные резцы применяются в основном для тонкой обработки (в особенности для тонкого точения) цветных металлов, а также для обработки неметаллических материалов — фибры, эбонита, пластмасс, твердого каучука и т. п. При обработке пластмасс стойкость алмазных резцов выше стойкости твердосплавных в сотни раз. Для обработки черных металлов эффективность их менее значительна из-за недостаточной прочности и быстрого разрушения. Поэтому для обработки черных металлов применяются резцы, оснащенные твердым сплавом. Алмазные резцы обеспечивают точность обработки по 1-му классу. Из-за снятия небольшого припуска качество обрабатываемой поверхности получается высоким (в пределах 12—13 классов), так как устраняется ее повреждение или разрушение. Это благоприятно сказывается на долговечности деталей машин в эксплуатации. Работа на высоких скоростях (до 3000 ли мин) при небольшой подаче (0,01—0,10 мм) и малой глубине резания (0,1—0,3 мм) способствует благодаря малым силам резания уменьшению деформаций обрабатываемой детали. Необходимо отметить также высокую стойкость алмазных резцов.  [c.82]

Помимо правки алмазными инструментами, в настоящее время широко применяется безалмазная правка. Такая правка производится в тех случаях, когда точность обработки не превышает 12— 15 мк. К видам безалмазной правки относятся правка абразивными кругами, шарошками, дисками, стальными и твердосплавными роликами.  [c.108]

Применение алмазного инструмента способствует ускорению темпов технического прогресса, позволяет внедрять новые прогрессивные технологические процессы, обеспечивающие более высокие точность и качество обработки, увеличение срока службы и повышение надежности работы машин и приборов. Например, алмазно-абразивная обработка режущего инструмента позволяет удлинить срок его службы в полтора-два раза, обеспечивая тем самым значительный экономический эффект, особенно в условиях автоматических станков и линий.  [c.23]

При ультразвуковой обработке можно получать отверстия различной формы. Важным преимуществом ультразвуковой обработки по сравнению с электроэрозионной или анодно-механической является то, что можно обрабатывать заготовки как из токопроводящих материалов (твердых сплавов), так и токонепроводящих (стекла, керамики). При обработке заготовок из металлов, стекла и керамики в качестве абразивного материала применяют карбид кремния или карбид бора, а при обработке алмаза — алмазную пыль. Производительность ультразвуковой обработки зависит от размеров обрабатываемого отверстия, амплитуды колебаний инструмента, механических свойств материала обрабатываемой заготовки, размера зерна, концентрации суспензии и др. Увеличение размера зерна абразива повышает производительность процесса, но снижает точность обработки и повышает шероховатость поверхности. Влияние величины зерна абразивного материала на точность и шероховатость поверхности показано в табл. 12.  [c.247]

Получение отверстий лазером возможно в любых материалах. Как правило, для этой цели используют импульсный метод. Производительность достигается при получении отверстий за один импульс с больиюй энергией (до 30 Дж). При этом основная масса материала удаляется из отверстия в расплавленном состоянии под давлением пара, образовавшегося в результате испарения относительно небольшой части вещества. Однако точность обработки одноимлульсным методом невысокая (10. .. 20 размера диаметра), Максимальная точность (1. .. 5 %) и управляемость процессом достигается при воздействии на материал серии импульсов (многоимпульсный метод) с относительно небольшой энергией (обычно 0,1. .. 0,3 Дж) и малой длительностью (0,1 мс н менее). Возможно получение сквозных и глухих отверстий с различными формами поперечного (круглые, треугольные и т. д.) н продольного (цилиндрические, конические и другие) сечений. Освоено получение отверстий диаметром 0,003. .. 1 мм при отношении глубины к диаметру 0,5 10. Шероховатость поверхности стенок отверстий в зависимости от режима обработки и свойств материала достигает/ а — 0,40. .. 0,10 мкм, а глубина структурно измененного, или дефектного, слоя составляет 1. .. 100 мкм. Производительность лазерных установок при получении отверстий обычно 60. .. 240 отверстии в 1 мин. Наиболее эффективно применение лазера для труднообрабатываемых другими методами материалов (алмаз, рубин, керамика и т. д.), получение отверстий диаметром мепее 100 мкм в металлах, или под углом к поверхности. Получение отверстий лазерным лучом нашло особенно широкое применение в производстве рубиновых часовых камней и алмазных волок. Например, успешно получают алмазные волки на установке Квант-9 с лазером на стекле с примесью неодима. Производительность труда на этой операции значительно увеличилась по сравнению с ранее применявшимися методами.  [c.300]

Наибольшими возможностями в отношении повышения точности и производительности обладают новые способы окончательной и доводочной обработки. Большинство из них связано с применением синтетических алмазов и кубического нитрида бора (эльбора). Алмазные и эльборовые круги отличаются высокой размерной стойкостью и обеспечивают в 1,5—2,5 раза более высокую производительность, чем инструмент из обычных абразивных материалов. Тарельчатые круги с эльбороносным слоем позволяют получать зубчатые колеса 4—5-й степеней точности и избежать образования при шлифовании прижогов. Высокая режуш,ая способность и стойкость алмазных брусков гарантируют не только существенное улучшение чистоты поверхности, но и устранение погрешностей формы отверстия при хонинговании. Большим достоинством является также то, что при работе алмазным инструментом резко снижается влияние на точность обработки теплового фактора.  [c.6]


Особенности организации обслуживания и ремонта прецизионных- станков. К станкам повышенной точности относятся токарновинторезные станки, обеспечивающие возможность обработки деталей по 1 и 2-му классам точности, координатно-расточные станки, станки для финишной обработки деталей, например алмазно-расточные станки (с точностью обработки 3—5 мк), шлифовальнопритирочные (хонинговальные), шлифовально-отделочные (супер-финишные), резьбошлифовальные станки (с точностью обработки 0,005 мм на 2,5 мм длины резьбы), зубошлифовальные станки и др.  [c.207]

Тонкое точение обеспечивает точность обработки второго и даже первого классов и чистоту 7—8 классов, а в некоторых случаях 9-го класса по ГОСТ 2789-59. Производительность процесса не ниже шлифования и равна при обработке алмазными резцами 165—535 мм 1сек твердосплавными резцами — 65— 350 мм 1сек. Наиболее широко тонкое точение применяется для цветных сплавов, реже для сталей и чугунов. Высокая точность при тонком точении достигается снятием стружки малого сечения, при высоких скоростях резания, инструментами, оснащенными твердыми сплавами или алмазами, с тщательно доведенными режущими кромками. В результате таких режимов резания не появляется нарост на резцах.  [c.37]

В связи с непрерывным уменьшением припусков и повышением требований к чистоте и точности обработки в металлообра-батываюш,ем оборудовании машиностроительных заводов увели-чивается доля оборудования, занятого на конечных, доводочных операциях, и уменьшается доля оборудования на начальных, обдирочных и черновых операциях. Уменьшается доля токарных, строгальных и фрезерных станков увеличивается доля шлифовальных станков. Появляется принципиально новое оборудование для алмазной, электроискровой, ультразвуковой обработок.  [c.22]

Для лучшего использования режущего ин-етрумента, повышения точности обработки и снижения шероховатости поверхности радиальные давления не следует увеличивать более 1,4 МПа при резании алмазно-металлическими брусками и более I МПа при использовании абразивных брусков. Станок должен иметь двухступенчатую систему разжима брусков в начале операции (первые 2 — 5 с), когда бруски работают по шероховатой поверхности, целесообразно, чтобы радиальное давление не превышало 0,3 —0,4 МПа с последующим автоматическим переключателем на повышенное давление.  [c.436]

Так, например, в расточных станках в связи с повышением требований к чистоте и точности обработки минимальные скорости подач составляют 0,5—4 мм1мин такие же подачи необходимы при доводке алмазного инструмента. В высокоточных шлифовальных станках подачи отделочных операций составляют 0,05—1 MMjMUH. Во всех этих случаях привод подач должен обеспечивать постоянство выходной скорости.  [c.478]

Высокая интенсивность электрохимического съема обрабатываемого материала определяется высокими плотностями тока (до 200 aj Mp-), что достигается при малых зазорах между кругом и деталью, равных высоте выступающих алмазов, и непрерывным обновлением процесса, благодаря интенсивному удалению прореагировавших продуктов и смене электролита в зоне обработки. Происходящее одновременно с электрохимическим процессом механическое шлифование твердого сплава алмазными зернами позволяет получить высокую точность обработки и высокую чистоту, поверхности, характерные для алмазного шлифования.  [c.210]

Точность обработки. Алмазное выглаживание проводится копирующим инструментом. Поэтому отклонения формы в продольном и поперечном сечениях изменяются незначительно, а размер детали (за счет смятия исходных микронеровносгей) - на 1 - 15 мкм. Точность обработки при этом может несколько снизиться. В связи с этим целесообразно на предшествующем переходе обеспечивать точность размеров на 20 - 30 % выше заданной для окончательно обработанной детали.  [c.507]

Калибрование - Виды инструментов 496-500 - Качество обработанных поверхностей 500- 502 - Режимы обработки 503-506 - Понятие 495 - Сущность процесса 495,496 - Точность обработки 502,503 Карацдаши алмазные 355, 356 Карбцд бора 337  [c.931]

Доводка на станке обеспечивает точность обработки 1-го класса и шероховатость поверхностей до 13-го класса. Рабочим инструментом служат алмазные бруски. В качестве охлаждающей жидкости применяется масло-керосиновая смесь с подачей до 1 л1мин.  [c.39]

Показатели среднеэкономической точности обработки отверстий на алмазно-расточных станках  [c.530]

На оптических профилешлифовальных станках 395М фасон- ные внутренние поверхности сквозных полостей шлифуют с помощью приспособления, показанного на рис. 33. Вращающейся алмазной головкой / получают шеро.човатость поверхности с па-)аметром Яа = 1,25—0,63 мкм. Точность обработки 0,01—0,02 мм. Трименение алмазного инструмента позволяет обрабатывать твердосплавные матрицы вырубных штампов.  [c.65]

Разработанные устройства для полирования внутренних цилиндрических поверхностей благодаря применению встроенных магнитов создают постоянную силу давления ленты на обрабатываемую поверхность, способствуют повышению точности обработки маложестких деталей, стойкости ленты и эффективности процесса. Например, при полировании стальных тонкостенных втулок диаметром 35 и длиной 40 мм с исходным параметром шероховатости / а = 2,5 мкм алмазной лентой зернистостью 80 при частоте вращения шпинделя 900 об/мин заданный параметр шероховатости поверхности / а = 0,63 мкм достигается за 1,5 мин обработки. При полировании невращающимся устройством цилиндрических поверхностей диаметром 23, длиной 30 мм с исходным параметром шероховатости Ra =2,5 мкм корпусных деталей из деформируемого алюминиевого сплава АЛ6 при частоте вращения детали 1200 об/мин заданный параметр шероховатости поверхности / а = 0,63 мкм достигается за I мин обработки.  [c.182]

Тонкое (алмазное) точение используют при обработке наружных цилиндрических и конических поверхностей, а также торцов заготовок. При этом достигается параметр шероховатости поверхности Ra = 0,32 -н 1,25 мкм, а точность размеров обработанных деталей соответствует 2-му классу. Тонкое точение проводят с малой подачей (0,02—0,05 мм/об), малой глубиной резания (0,05— 0,15 мм) и высокой скоростью (300—3000 м/мин). Резание с малыми сечениями стружки, а следовательно, и с малыми силами резания позволяет обтачивать заготовки с высокой точностью. Высокая точность обработки и высокие скорости резания предъявляют повышенные требования к станкам для тонкого точения главные из них высокая частота вращения шпинделя (2000—6000 об/мин) малые подачи (0,02—0,05 мм/об) высокая точность вращения шпинделя (радиальное биение не более 0,005 мм) высокая точность и большая жесткость всех элементов станка отсутствие колебания (вибраций) при большой частоте вращения шпинделя, что достигается наличием ременных передач. Обычные токарные станки не обеспечивают выполнения вышеуказанных требований, в связи с чем для тонкого точения, как правило, применяют специальные токарные станки. В качестве режущего инструмента для тонкого точения применяют резцы, оснащенные пластинами из твердых сплавов Т30К4, для обработки заготовок из стали, и пластинами из твердых сплавов ВК2 и ВКЗ — для заготовок из чугуна. Для заготовок из высокопрочных металлов используют резцы, оснащенные режущими элементами из эльбора.  [c.121]

Электрохимическую обработку применяют для заточки твердо-сплазных инструл ентов, шлифования, чистовой отделки и маркировки поверхностей Точность обработки находится в пределах 30—50 мкм, шероховатость поверхности На = 0,32 мкы, а производительность в сравнении с обычным шлифованием возрастает в 2—3 раза. При шлифовании твердосплавного инструмента применяют алмазно-металлические круги и водный раствор солей в качестве электролита.  [c.108]


Конструктивно подшипники скольження пз материала С2 выполняют с простыми геометрическимн формами, без пазов, выточек и других концентраторов напряжений и заключают в металлические обоймы, предохраняющие их от возможных разрушений от ударов. Особое внимание обращается на точность обработки и монтажа подшипникового узла. Допущенные дефекты приводят к дополнительным знакопеременным нагрузкам, сколам и трещинам во втулках при эксплуатации. Детали из материала С2 обрабатывают только алмазным шлифованием. Шлифование производят с охлаждением алмазного круга 1,5%-ным водным раствором кальцинированной соды в количестве 2—3 л/мин, а при массовом производстве — водопроводной водой. Параметры режимов шлифования плоских и круглых поверхностей приведены в литературе [34]. Притирка алмазной пастой и приработка производятся в одноименной паре трения со смазкой водой при скорости скольжения 1—1,5 м/с, давлении  [c.147]

Абразивный инструмент (шлифовальный круг) чаще применяется на чистовых операциях, где требуется высокая точность обработки. Износ инструмента компенсируется правкой алмазными карандашами и подачей абразивного инструмента на размер обработки, что у современных конструкций станков осуществляется полуавтоматически или автоматически.  [c.45]


Смотреть страницы где упоминается термин Алмазное Точность обработки : [c.60]    [c.556]    [c.476]    [c.118]    [c.557]    [c.122]    [c.505]    [c.56]   
Справочник технолога машиностроителя Том 1 (1972) -- [ c.557 ]



ПОИСК



386 — Точность обработки бруски, Алмазные головки, Алмазные

386 — Точность обработки карандаши. Алмазные круги

386 — Точность обработки например: Абразивные бруски. Абразивные головки, Абразивные инструменты, Абразивные круги, Алмазные

441—444 — Точность обработки тонкое (алмазная) — Припуски

441—444 — Точность обработки тонкое на алмазно-расточных станках

760 — 762 алмазный

Инструмент алмазный мерный режущий для обработки отверстий — Точность изготовления

Обработка Точность обработки



© 2025 Mash-xxl.info Реклама на сайте