Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность Влияние постоянных напряжени

Формула (15.8) получена без учета дополнительных факторов, влияющих на значения максимальных напряжений, например концентрации напряжений, состояния поверхности, размеров детали. Эти факторы мало влияют на прочность при постоянных напряжениях, поэтому их влияние относят к амплитуде цикла напряжения. С учетом перечисленных факторов формула (15.5) имеет вид  [c.156]

Во второй части книги были приведены сведения о расчетах на прочность при статическом действии нагрузки и краткие данные об определении напряжений при ударе. Для большинства деталей машин характерно, что возникающие в них напряжения периодически изменяются во времени в связи с этим возникает вопрос о расчете на прочность и установлении величин допускаемых напряжений при указанном характере нагружения. При действии переменных напряжений значительно существеннее, чем при постоянных напряжениях, сказывается влияние формы детали, ее абсолютных размеров, состояния и качества поверхности. Особое значение имеет форма детали и связанное с ней явление концентрации напряжений. Кратко ознакомимся с этим явлением, а затем рассмотрим вопрос о выборе допускаемых напряжений раздельно для статического и переменного во времени нагружения.  [c.328]


Для переменных нагрузок, которые имеют наибольшее распространение в современных машинах, наименьшая долговечность деталей наблюдается при симметричном цикле напряжений. Наоборот, с увеличением постоянного среднего напряжения (Тср и уменьшением амплитуды сТа влияние переменного напряжения на прочность деталей уменьшается.  [c.247]

В случае обычной усталости разброс усталостной прочности при постоянной долговечности (или, точнее говоря, разброс усталостной долговечности при постоянной амплитуде напряжения) является чаш е всего результатом наличия внутренних неоднородностей и вызываюш,их концентрацию напряжения или деформации неровностей, таких, как малые царапины, канавки от машинной обработки и т. д. С феноменологической точки зрения влияние этих неровностей на усталостную прочность часто можно описать, вводя механически эквивалентную совокупность плотностей поверхностных дефектов в том же смысле, как для хрупкого разрушения недеформируемых пластически материалов. В тех случаях, когда такое представление справедливо, можно получить аналогичное соотношение между усталостной прочностью прототипа и прочностями модельных лабораторных образцов.  [c.176]

Выносливость металла в атмосфере воздуха мало зависит от закона изменения напряжений в течение одного цикла и до частот порядка 1000 Гц практически не зависит от частоты изменения напряжений. Основное влияние на усталостную прочность металла оказывает вид напряженного состояния (наибольшей выносливостью металл обладает при циклическом изгибе, меньшей — при растяжении —сжатии и наименьшей —при кручении), а также величина и знак максимального и минимального напряжений. Влияет на усталостную прочность металла и степень асимметрии при изменении напряжений. Оказалось, что чем больше доля постоянного напряжения, тем выше выносливость при асимметричном цикле.  [c.77]

Влияние концентрации напряжений на прочность деталей как при постоянных напряжениях, так и при переменных оценивается эффективным коэффициентом концентрации напряжений.  [c.385]

Для армирования монослоя применяют различные волокна стеклянные, борные, углеродные и др. Большинство из этих волокон являются хрупкими, и поэтому их прочность в большой мере зависит от поверхностных дефектов. Влияние этих дефектов проявляется в виде разброса опытных данных при экспериментальном исследовании прочности волокон постоянной длины. Кроме того, влияние дефектов сказывается и на снижении прочности волокон при увеличении их длины. Таким образом, волокна, которыми армирован монослой, не разрушаются одновременно. Когда степень разрушения наименее прочных волокон достигает определенного уровня, начинается лавинное разрушение волокон. Так, например, установлено, что лавинное разрушение волокон стеклопластика начинается при степени разрушения 10-15 %. Учитывая, что в процессе лавинного разрушения волокон напряжения изменяются в очень узком интервале, можно принять, что деформация армированного пластика, т.е. монослоя в процессе лавинного  [c.294]


Если классифицировать указанным образом явления, характеризующие высокотемпературную прочность, до можно отметить, что самыми существенными являются не зависящие от времени прочностные свойства при высокотемпературном растяжении,. мало- и многоцикловой усталости- Кроме того, существенным является ползучесть при постоянном напряжении, зависящая от времени, и ползучесть при циклическом изменении напряжения, проявляющая дополнительно специфический эффект циклического изменения температуры. Таким образом, характеристики деформации при высокотемпературном растяжении и термическом скачке деформации, а также характеристики разрушения при высокотемпературной и термической усталости, определяемые при условиях сочетания или наложения влияния напряжения и деформации, времени и температуры, не обязательно выражаются основными свойствами. Они во многих случаях про являют специфические характеристики деформации и сопротивления разрушению из-за взаимного влияния. Вероятно, в некоторых случаях имеются отклонения характеристик прочности от указанного на схеме положения (характеризуемые, например, линейным законом накопления повреждений).  [c.18]

Влияние температуры. Экстраполяция экспериментальных данных. Как отмечалось выше, повышение температуры испытания приводит к уменьшению времени до разрушения при постоянном напряжении. В качестве иллюстрации на рис. 47, 48 и 49 приводятся данные по длительной прочности различных материалов (молибдена, полиэтилена низкого давления, ненаполненной резины). Как видно из приведенных рисунков, при определенной  [c.116]

Электрическая прочность стекол при электрическом пробое мало зависит от их состава. Решающее влияние на р оказывают воздушные включения — пузыри в толще стекла. При постоянном напряжении в однородном электрическом поле стекла весьма велика и достигает 500 МВ/м. При высоких частотах или при высоких температурах пробой стекла имеет тепловой характер.  [c.197]

Разрушение при ползучести. В. И. Розенблюм (1957) получил решение задачи об определении времени до разрушения диска постоянной толщины с отверстием. В основу положены уравнения установившейся ползучести, распространенные на случай конечных деформаций, таким образом, рассмотрена схема вязкого разрушения. Л. М. Качанов (1960) рассмотрел на основе своей теории некоторые задачи о времени разрушения стержневых систем, сформулировал общую постановку задачи о движении фронта разрушения и определил время разрушения скручиваемого вала. Ю. Н. Работнов (1963) решил задачу о разрушении диска с отверстием по схеме хрупкого разрушения. При этом учитывалось влияние накопления поврежденности на скорость ползучести и, следовательно, на распределение напряжений. Позже Ю. Н. Работнов (1968) рассмотрел вопрос о влиянии концентрации напряжений на длительную прочность. При этом считалось, что распределение напряжений мало отличается от распределения напряжений в жестко-пластическом теле, но переменная величина степени поврежденности со фигурирует в условии пластичности, которое становится подобным условию равновесия неоднородной сыпучей среды.  [c.149]

Исследованиями М. Г. Лозинского установлено влияние величины сжатия и температуры на процессы диффузии, проходящие на границе раздела слоев сжимаемых образцов и определяющие прочность схватывания (491. При этом обнаружено, что с увеличением напряжения сжатия при данной температуре ширина зоны диффузии углерода из образца углеродистой стали (1,48% С) в чистое железо уменьшается, а с увеличением температуры при постоянных напряжениях сжатия и выдержке увеличивается  [c.92]

Основные критерии работоспособности осей и валов — прочность и жесткость. Прочность осей и валов определяют размером и характером напряжений, возникающих под влиянием сил, действующих со стороны установленных на них деталей машин. Переменные по размеру или направлению силы, действующие на оси и валы, вызывают переменные напряжения. Постоянные по размеру и направлению силы вызывают в неподвижных осях постоянные напряжения, а во вращающихся осях и валах — переменные напряжения. Вращающиеся вместе с осями и валами нагрузки (например, центробежные силы) вызывают постоянные напряжения.  [c.272]


Постоянные нагрузки по-разному влияют и на прочность машин. При расчете на статическую прочность они входят в суммарную нагрузку как простое слагаемое. В тех случаях, когда статическая нагрузка вызывает появление стационарных циклических нагрузок или циклических напряжений в элементах машин (как, например, в рассмотренном примере с нагружением зубьев зубчатых колес и валов механизма передвижения крана), ее влияние велико и его учитывают совместно с другими циклическими нагрузками. Если же постоянная нагрузка при действии на элемент вызывает в нем только постоянные напряжения, а от других нагрузок он испытывает циклические напряжения, то эквивалентное напряжение определяют так  [c.35]

Электрическая прочность определяется при постоянном напряжении на 2[исках толщиной 1,5 мм и диаметром 50 мм в резко неоднородном электрическом поле. Установлено, что на электрические и механические свойства керамических материалов существенное влияние оказывает макроструктура керамики, которая обусловлена технологическими приемами ее изготовления. Материалы с однородной и мелкозернистой структурой обладают наибольшими электрическими и механическими прочностями.  [c.350]

Недостаток испытаний, связанных с жестким защемлением образца при изгибе, состоит в том, что нагрузка на образец в процессе испытания непостоянна из-за релаксации напряжений в образцах. Кроме того, использование полученных результатов в значительной степени затруднено, так как большинство изделий из стеклопластиков работает в условиях постоянного напряжения, а не постоянной деформации. Значительно более актуально исследовать влияние сред на долговременную прочность и ползучесть. Полученные при этом результаты могут быть непосредственно использованы в расчетах. Как указывалось выше, эти характеристики рядом авторов были приняты за критерии химического сопротивления стеклопластиков [40, 68].  [c.76]

К ТА к- — эффективные коэффициенты концентрации напряжений при изгибе и при кручении (табл. 13.2) е, и Ет — масштабные факторы для нормальных и касательных напряжений (табл. 13.3) и я1 т — коэффициенты, учитывающие влияние постоянной составляющей цикла на усталостную прочность (табл. 13.4).  [c.379]

Ниже рассматриваются экспериментальные данные о влиянии концентрации напряжений на кратковременную статическую прочность фенольного и эпоксидного стеклопластиков. В качестве источника концентрации напряжений был принят двухсторонний гиперболический надрез, аппроксимированный окружностью и двумя касательными, который позволяет в более широких пределах (чем отверстие) варьировать величину коэффициента концентрации. Параметры надреза подбирались так, чтобы при разных по величине площадях поперечных сечений образцов и разных коэффициентах концентрации напряжений оставался постоянным относительный градиент напряжений  [c.45]

Для пластичных материалов местные напряжения в условиях постоянной нагрузки не оказывают на прочность детали существенного влияния.  [c.399]

Влияние же температуры на интенсивность деформационного упрочнения, напряжение течения и предел прочности оказывается [18] прямо противоположным влиянию на предел текучести. Например, у металлов с ГЦК-решеткой интенсивность деформационного упрочнения (да/дг) и предел прочности существенно возрастают с понижением температуры. Так как предел текучести почти не зависит от температуры, то отношение пределов прочности и текучести при низких температурах возрастает, данное обстоятельство делает металлы с ГЦК-ре-шеткой особенно перспективными для использования при низких температурах. У металлов с ОЦК-решеткой интенсивность деформационного упрочнения с понижением температуры либо сохраняет постоянное значение, либо уменьшается. Вследствие этого кривая температурной зависимости предела прочности либо приблизительно эквидистантна кривой предела текучести, либо отклоняется вниз с понижением температуры. Таким образом, пластичность (в данном случае — равномерная деформация) металлов с ОЦК-решеткой при низких температурах снижается, для многих из них характерен переход от вязкого поведения к хрупко.му что резко ограничивает возможность их исполь-  [c.17]

Выражение (2.161) получено без vчeтa влияния концентраиии напряжений, размеров детали и ссстояния поверхностных слоев материала. Указанные факторы в большей степени влияют на прочность при переменных напряжениях и в меньшей степени на прочность при постоянном напряжении. Учитывая это обстоятельство, коэффициент запаса следует вычислять по выражению  [c.205]

При напряжениях, постоянных во времени, коэффициент а достаточно хорошо характеризует прочность детали, изготовленной из хрупкого материала однородной структуры (например, из инструментальной стали). При достижении местными напряжениями а акс величины, равной Оа, произойдет разрушение детали. Для деталей, изготовленных из пластичных материалов, влияние концентрации напряжений при постоянной нагрузке оказывается меньшим, чем это определяется коэффициентом а . В этом случае, после того, как напряжения Омакс достигнут предела текучести, рост их прекращается, материал в точках т начинает течь . Дополнительная нагрузка воспринимается средними волокнами, напряжения в них растут. Процесс роста напряжений в средних голокнах продолжается до тех пор, пока не прекратится течение  [c.200]

Пример релаксации термических напряжений в жестко закрепленном стержне при его нагреве и выдержке в течение 10,7 мин и схема процесса развития деформаций приведены на рис. 39. Процесс циклического термического нагружения, при котором каждый цикл осуществляется с выДержкой при максимальной температуре, сопровождается процессом циклической ползучести, однако значительно более сложным, чем циклическая ползучесть при изотермическом нагружении. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае — растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении — процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагру-жения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения (см. тл. III) подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. В табл. 12 приведены значения этих характеристик, полученные при испытании сплава ХН77ТЮР по режиму, соответствующему техническим условиям на сплав /=750°С 0=350 МПа. Величина наклепа определялась степенью пластического деформирования образцов  [c.103]


Под влиянием релаксации напряжения, особенно если она происходит с большой скоростью (например, структурная релаксация при переходе через предел прочности), при постоянной скорости работы привода происходит разгрузка динамометра и существенно изменяется режим деформирования. Для обеспечения его постоянства необходимо использовать схемы работы привода с обратной связью так, чтобы возможное снижение напряжения компенсировалось повышением скорости деформации. При значительной скорости релаксации напряжения обратная связь должна отличаться высокой жесткостью. С другой стороны, если релаксация напряжения в материале совершается с невысокой скоростью, то режим т = onst можно поддерживать ручной регулировкой работы привода.  [c.99]

ПРОЧНОСТИ ВРЕМЕННАЯ ЗАР,ИС11-МОСТЬ — зависимость между временем до разрушения (долговечностью) п приложенным постоянным напряжением (o57J4ho растягивающим).П.в.3. твердых тел является частным случаем усталости материала. П.в.з. характерна для всех твердых тел и определяется природой самого разрушения, к-рое представляет собой активированный процесс образования и роста микротрещин под действием теплового движения и напряжения. Впервые П.в.з. была установлена на силикатных стеклах. Для металлов, пластмасс, неорганич. стекол, волокон в отсутствие поверхностно-и химическиактивного влияния среды П.в.з. выражается формулой  [c.86]

Действие остаточных напряжений, как уже указывалось, аналогично действию постоянных напряжений. На основании теоретического анализа в работе [21] установлена зависимость эффективности остаточных напряжений (в смысле влияния на усталостную прочность) от коэффициента неравнопрочности т)о. Этот коэффициент определяется из сопоставления пределов текучести при осевом статическом растяжении и сжатии. При увеличения коэффициента неравнопрочности влияние остаточных напряжений на усталостную прочность увеличивается. Разница между эффективностью одинаковых по величине растягивающих остаточных напряжений и сжимающих увеличивается с ростом величины т]о. При этом растягивающие остаточные напряжения в большинстве случаев меньше снижают усталостную прочность, чем такие же по величине сжимающие остаточные напряжения.  [c.296]

Существенное влияние на пробой я<идких диэлектриков оказывает форма электродов. В общем случае можно считать, что с увеличением степени неоднородности поля при данном расстоянии между электродами существует тенденция к снижению пробпвного напряжения жидкого диэлектрика. Увеличение площади электродов, как правило, приводит к снижению пробивного напряжения жидкого диэлектрика (при постоянном напряжении или при частоте 50 Гц), но не отражается на значениях импульсной прочности.  [c.99]

Сущность терм о-м агнитной обработки состоит в том, что сталь в процессе закалки и отпуска подвергается воздействию постоянного или переменного магнитного поля. М. Л. Бернштейн с сотрудниками [11, 12] исследовал влияние постоянного и переменного магнитных полей на закалку и отпуск легированных инструментальных сталей марок ХВГ и Р18. Образцы помещали в сосуд с маслом, расположенный между полюсами электромагнита, создающего постоянное магнитное поле напряженностью до 3980 ка/м (5 ООО э), а при наложении переменного магнитного поля — в соленоид, обеспечивающий магнитное поле напряженностью 955 ка/м (1 200 э). Намагничивание производилось до полного насыщения. Исследования показали, что предел прочности при изгибе у стали  [c.219]

I 5 а I 1 = и, в которой на левой стороне характеристика микрообъема 5 вблизи корня дефекта, и на правой стороне напряжение и макрообъем с дефектом длиной /. Фактор интенсивности напряжения вытекает именно из этого определения и для лпшимальиой величины зона пластической дефор.мацин соответствует наибольшему напряжению. Так как одновременно так же определяет освобождаемую энергию упругой напряженности в области трещины, то является очевидным, что разделение материала в корне дефекта должно зависеть от предельного значения фактора интенсивности напряжения иУстановление объема и изменений свойств пластической зоны до предельного состояния по прочности в настояигее время осуществляется изменением раскрытия трещины специальными датчиками. Таким образом возможно установить локальные качества материала, определяющие предельное состояние прочности реальных тел с дефектами. Было показано, что величина пропорциональна Критическое значение фактора интенсивности напряжения поэтому является важной характеристикой материала. Минимальное ее значение отличается от средней величины и зависит от скорости нарастания трещины. Тем не менее используется упрощение для линейной трактовки механики хрупкого разрушения и предполагается, что эта величина постоянная. Влияние различных препятствий краевых условий и влияние всего напряженного объема нельзя объяснить в требуемых масштабах на основании этой механики разрушения и будущее принадлежит теории, основанной на анализе распространения эластических волн в теле, сопровождающем развитие хрупкой трещины. Динамически параметры существующей экспериментальной техникой пока не исследуются.  [c.457]

Можно доказать, что Сопз1 = -2в7 . Решение ур-ия (18) дает распределение напряжений при К. для бруска любой формы, если ф-ия напряжений сохраняет на контуре постоянное значение. Венан применял с большим успехом полуобратный метод для решения этого ур-ия частью напряжений (деформаций) он задавался, другие находил по ур-ию (18). Вебер-Риманом дано решение в общей форме логарифмического потенциала. Вебер изучает распределение главного вектора напряжений и таким обр. принимает во внимание влияние нормальных напряжений. Для круга во всех решениях получаются одни и те же ур-ия прочности и деформации. Рейнер рассматривает вал круглого сечения под нагрузкой поверхностн. силами и приходит к существенно иной ф-ле прочности  [c.337]

Учет влияния остаточных напряжений на усталостную прочность соединений затрудняется тем, что их уровень существенно изменяется в процессе циклического нагружения в зависимости от действующих нагрузок, асимм етрии цикла и вица соединения. При этом основные изменения происходят при первых циклах нагружения. В дальнейшем изменения остаточных напряжений за каждый последующий цикл уменьшаются и после 20 нагружений их уровень можно считать практически постоянным [318].  [c.320]

Влияние времени сварки на прочность соединений (рис. 5, а) можно представить следующим образом. При давлениях сжатия 30 МПа для сплава ЭИ602 и 40 МПа для ЭП99 за счет вязкого течения металла происходит сближение соединяемых поверхностей и образование межатомных связей. При быстром охлаждении на воздухе па этой стадии возможно проявление эффекта термомеханической обработки. Решающую роль играют давление и температура. Последующая выдержка в условиях непрерывно падающего давления сжатия приводит к замедлению течения металла, к ползучести при сравнительно низких напряжениях и развитию процессов рекристаллизации, что снижает эффект термомеханической обработки, но при этом продолжается процесс устранения микронесплошностей и образования монолитного металла в зоне стыка. При времени сварки 1 мин снижение механических свойств можно объяснить снятием эффекта термомеханической обработки и недостаточной степенью протекания диффузионных процессов. Многократные опыты по восстановлению усилия сжатия после выдержки 1 мин с последующим быстрым охлаждением обеспечивали повышение прочности и пластичности соединений. Описанный характер влияния времени сварки на свойства соединений имел место только при сравнительно высоких давлениях сжатия, которые обеспечивали образование контакта соединяемых поверхностей за счет пластической деформации металла в течение нескольких секунд. Об образовании такого контакта свидетельствует тот факт, что выдержка образцов в течение 5 мин при температуре сварки без давления, которое было снято после 10 с, обеспечивала равнопрочность соединений с основным металлом. При давлении сжатия 20 МПа необходимо было поддерживать его постоянным в течение нескольких минут, чтобы обеспечить фактический контакт иоверхностей за счет ползучести металла при постоянном напряжении. Аналогичные результаты наблюдали при сварке сплава ВЖ98 (рис. 5, б). Общим критерием для оценки влияния сжимающих напряжений при различном их уровне является степень пластической деформации металла. В большинстве случаев равнопрочность соединений с основным металлом достигали при деформации металла в зоне стыка, равной 5—8%.  [c.170]


Современные расчеты на сопротивление усталости отражают характер изменения напряжений, характеристики сопротивления усталости материалов, концентрацию напряжений, влияние абсолютных размеров, шероховатости поверхности и поверхностного упрочнения. Расчет обычно производят в форме проверки коэффициента запаса прочности по усталости. Для расчс .та необходимо знать постоянные а , и Тт и переменные а<, и Та составляющие напряжений. Коэффициент запаса прочности определяют по уравнению  [c.324]

Эффект увеличения прочности кристалла каменной соли, а также экспериментально наблюдаемые многочисленные случаи преждевременного разрушения конструкций и сооружений при напряжениях, меньших условного предела текучести Оо,2, явились 1 унмым показателем недостаточности развитых представлений о прочности как о постоянной материала. Поэтому при исследовании прочности, начиная с работ А. А. Гриффитса, Дж. И. Тейлора, Е. О. Орована, Дж. Р. Ирвипа и др., появилось повое иап-равление, в основе которого лежит детальное изучение самого процесса разрушения. Так как разрушение происходит в результате развития содержащихся в теле реальных дефектов, при оценке прочности нужен учет имеющихся в теле трещин и опре-делепие их влияния на прочность.  [c.9]

Влияние вида трения на условия взаимодействия микровысту-пов сопряженных поверхностей схематично показано на рис. 77. При жидкостном трении каждый участок поверхности нагружен постоянным давлением, не изменяющимся при относительном перемещении поверхностей, т. е. статической нагрузкой. Эта нагрузка не в состоянии разрушить микровыступы, так как возникающие напряжения находятся в области больших запасов прочности. -,t  [c.248]


Смотреть страницы где упоминается термин Прочность Влияние постоянных напряжени : [c.403]    [c.68]    [c.250]    [c.29]    [c.563]    [c.244]    [c.50]    [c.291]    [c.231]    [c.305]    [c.243]    [c.211]    [c.226]    [c.164]   
Расчет на прочность деталей машин Издание 3 (1979) -- [ c.599 ]



ПОИСК



АБ при постоянном напряжени

Влияние напряжений

Напряжение постоянное



© 2025 Mash-xxl.info Реклама на сайте