Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сигналы стационарные

Пользуясь (5) и выражениями для полей, нетрудно записать общие формулы для интенсивности сигналов стационарной и нестационарной когерентной антистоксовой спектроскопии рассеяния света (КАРС)  [c.149]

При возникновении и развитии дефектов с малой виброактивностью возбуждаются колебания, которые, как правило, являются слабыми диагностическими сигналами. Неисправности порождают узкополосные и широкополосные сигналы стационарных и нестационарных процессов. С точки зрения вибрационной прочности, в агрегатах наиболее опасны колебания периодического характера, имеющие спектры с явно выраженными дискретными составляющими. Подобные опасные колебания в основном являются сильными диагностическими сигналами (т.е. хорошо выделяются на фоне помех).  [c.23]


Датчики и измерительные системы, используемые для получения информации с вращающихся объектов, принципиально не отличаются от датчиков и измерительных систем для стационарных условий, хотя и могут иметь специфические особенности. Передача сигналов с вращающихся элементов на неподвижные представляет собой наиболее сложную часть измерительной процедуры, реализация которой требует разработки специальных устройств. Эти устройства весьма разнообразны по принципу действия и конструктивному оформлению и к настоящему времени не- стандартизованы.  [c.309]

Для иллюстрации применения метод статистического анализа нелинейных систем с использованием полиномов Вольтерра определим математическое ожидание и спектральную плотность мощности сигнала на выходе фотоприемника, когда на его входе действует случайный стационарный гауссовский сигнал. Считаем, что полезная информация о сигнале содержится в амплитуде лучистого потока, к оторый попадает на чувствительную площадку фотоприемника. Тогда в соответствии с изложенным в п. 2 гл. 3 модель фотоприемника представим последовательным соединением нелинейного и линейного звеньев. Спектр сигнала на выходе такой системы, как следует из формул (106) и (107), определяется выражением  [c.115]

Применение такого варианта метода медленно меняющихся амплитуд иногда упрощает нахождение стационарных решений, особенно в задачах, где отсутствует опорное колебание (вызванное, например, внешней силой, модуляцией параметра, синхронизирующим сигналом), фазовый сдвиг (фаза) которого относительно искомого колебания естественно вошел бы в решение. К подобным системам относятся, в частности, пассивные линейные и нелинейные колебательные системы, автоколебательные системы и др. Некоторое облегчение решения задач этот вариант метода ММА дает также в тех случаях, когда нелинейные характеристики каких-либо параметров колебательной системы аппроксимируются высокими степенями разложения в ряд.  [c.75]

Плотность теплового потока подбирали достаточно малой, чтобы не изменить свойств продукта, столь лабильного, как тесто для бисквита, при достаточно высоком сигнале датчиков, определяющем точность измерений. Удовлетворение обоих требований отражалось в стабильных показаниях датчиков теплового потока при стационарном режиме метода циклов, т. е. при определении Я. Поскольку первичным является температурный напор в термостатированных камерах прибора ТК-ТК, между которыми располагали образец, при изменении его свойств неизбежно должен был измениться и тепловой поток через него.  [c.138]


В связи с изложенным был выполнен специальный эксперимент по анализу сигналов АЭ в цикле приложения нагрузки стационарного режима нагружения прямоугольных образцов путе.м  [c.169]

Структурная схема ИИС подвижной модели для случая измерения одного параметра приведена на рис. 1. В ней можно выделить две подсистемы мобильную 1 и стационарную 2. Передача информационных сигналов от мобильной подсистемы к стационарной осуществляется по проводной линии с ограниченной полосой пропускания (/л< 10-10 Гц), подверженной воздействию помех.  [c.53]

Свойства (3.3) —(3.5) являются следствием стационарности (или эргодичности) коррелируемых процессов gi(i) и %2 t) и поэтому верны для всех реальных акустических сигналов машин и механизмов.  [c.81]

В результате можно предложить последовательность действий для оценки стационарных и эргодичных свойств виброакустических сигналов.  [c.57]

Приведена методика проверки стационарных и эргодических свойств виброакустических сигналов машин с использованием критериев серий Фишера. Коч-рена. Дается пример оценки стационарности и эргодичности случайного процесса — виброскорости абсолютных смещений корпуса шпинделя токарного станка.  [c.117]

ВИК-1 позволяет испытывать изделия на воздействие стационарных и нестационарных, широкополосных и узкополосных, детерминированных и случайных сигналов с требуемыми статистическими характеристиками осуществлять компенсацию неравномерностей АЧХ стационарных вибровозбудителей и стабилизацию АЧХ нестационарных вибровозбудителей, измерять и контролировать основные параметры генерируемых сигналов и имитируемой вибрации. ВИК-1 содержит задатчик форм колебаний, предназначенный для генерирования испытательных сигналов и контроля их параметров многоканальное программное устройство (МПУ), предназначенное для программного управления статистическими характеристиками генерируемых сигналов в функции времени или других параметров при работе в совокупности с устройствами цифровой вычислительной техники устройство управления вибровозбудителем, предназначенное для стабилизации АЧХ нестационарных вибровозбудителей, например, установленных на трехосном динамическом стенде.  [c.325]

При построении моделей возникают две основные задачи. Первая связана с определением структуры объекта, оцениванием линейности, стационарности, выбором информационных вибрационных сигналов, определяющих техническое состояние и его изменение. Вся эта информация априорна для решения второй задачи — определения параметров и отклонений параметров объектов. Определение параметров объекта или эквивалентной ему модели включает в себя не только оценку их для данного момента, но и прогнозирование их изменения, что дает возможность применять эти результаты для диагностики качества функционирования.  [c.157]

Выходное напряжение ИФД, определяющееся разностью фаз поступающих на его входы напряжений, через запоминающее устройство ЗУ, фиксирующее выходное напряжение детектора в промежутке между двумя импульсами, и фильтр нижних частот ФНЧ-3 поступают на управляющий элемент УЭ (варикап, реактивная лампа). УЭ изменяет частоту сигнала ДПГ, приведя ее в соответствие с частотой повторения опорных импульсов от ДОС. В стационарном режиме, когда частоты сигналов от ДОС и ПГ равны, в системе устанавливается постоянная разность фаз  [c.135]

Re p). Следует также иметь в виду, что при наличии периодического возмущения скорости жидкости значение критического числа Рейнольдса может быть меньше, чем для стационарного режима течения. Кроме этого, при высоких частотах и достаточно сложном сигнале возмущения скорости может генерироваться искусственная турбулентность под действием интенсивных акустических волн. Эти эффекты могут существенно повлиять на средний по времени коэффициент теплоотдачи. Как правило, интенсивные колебания скорости или давления жидкости приводят к увеличению среднего по времени коэффициента теплоотдачи. Рассмотрим результаты экспериментальных исследований.  [c.133]

Основным в принципе является изучение свойств и процессов систем невысоких (как правило, первого и второго) порядков, но имеющих характерные особенности, свойственные исходным системам высоких порядков (наличие определенных нелинейностей, запаздываний, дискретность сигналов и т. д.). Цель данного изучения состоит в том, чтобы приближенно представить процессы в специальных системах невысоких порядков линейными стационарными уравнениями. Полные процессы в системах высоких порядков формируются суммированием указанных более простых процессов по методу эффективных полюсов и нулей.  [c.259]


Интересным, с точки зрения механики сплошной среды, является практическое использование динамических эффектов, имеющих место при стационарном движении нити. На рис. 5.24 показана работающая баллистическая антенна, у которой для приема и передачи сигналов используется быстродвижущийся замкнутый проводник. Основной особенностью баллистической антенны (по сравнению с ранее рассмотренными случаями движущихся абсолютно гибких стержней) является условие < I, что дает возможность несколько упростить определение произвольных постоянных Сц. Рассмотрим наиболее общий случай, когда а О (рис. 5.24). Экспериментальные исследования и точные численные расчеты показывают, что длины ветвей АК и КВ)  [c.126]

На основе проведенных различными авторами исследований стационарных и динамических свойств СЦТ можно сделать следующие выводы в настоящее время отсутствует непротиворечивая математическая модель, позволяющая анализировать температурную реакцию системы на внешние и внутренние возмущающие воздействия. Под внешними воздействиями понимают управляющие сигналы диспетчера и изменение метеорологических условий. Под внутренними воздействиями понимают взаимное  [c.84]

Если случайный сигнал на входе описывается как стационарный, то выражение (4) точно совпадает с пост шовкой задачи Винера, но для двумерных сигналов. Корреляционная фуикция выходного сигнала  [c.18]

Рассмотрим нелинейную систему (рис. 26), образованную последовательным соединением линейного нестащюнарного и стационарного безынерционного нелинейного звеньев. Хар истеристика такого нелинейного звена описывается полиномом степени А . В соответствии с изложешшм выше сигналы на выходе линейного и нашейного звеньев определяются выражениями  [c.95]

Для практики важно рассмотреть дей твие на нелинейные системы случайных стационарных сигналов с гауссовским законом распределения плотности вероятности. Для вычисления центральных и-мерных моментов гауссовского стационарного случайного троцесса существует следующая рекуррентная формула [ 16]  [c.113]

Проведя указанную классификацию, пользователь должен выбрать тестовые входные сигналы и дать прогно о характере шумов в электронном тракте объекта проектирования. Под прогнозом шумов понимается определение стационарности или нестационарности случайного процесса, описывающего шумы электронного тракта (на основе знания элементной базы электронного тракта объекта прое)стирования и приемника лучистой энергии), и определение основных мс ментов и распределения случайного процесса (в предположении полного отсутствия в тракте специальных помехоподавляющих элементов, т. (. для самого худшего случая). ПАСМ позволяет моделировать только аддитивные шумы.  [c.143]

Особенности моделирования электронного тракта ОЭП. ПАСМ предоставляет проектанту возможность моделирования процесса преобразования стандартными линейными и нелинейными звеньями когерентных (детерминированных), некогеренткых (случайных нестационарных) и частично когерентных (стационарных коррелированных) сигналов.  [c.148]

Система КАМАК является составной частью ЕССП (уровень 2). ГОСТ 26.201—80 Система КАМАК. Крейт и сменные блоки. Требования к конструкции и интерфейсу разработан АН СССР на базе международного стандарта КАМАК и полностью соответствует Публикации МЭК 516. Стандарт распространяется на модульную стационарную аппаратуру системы КАМАК и устанавливает требования к конструкции, электрическим сигналам, пи танию и логике обмена информацией, которые обеспечивают совместимость блоков с крейтом и между собой. Совокупность механических, электрических, информационных и зависящих от устройства функциональных элементов, необходимых для взаимодействия устройств в системе, составляет систему интерфейса.  [c.195]

Задача по.лученпя объемного изображения была решена методически путем считывания сигналов с двух парных детекторов, которые стационарно вмонтированы в камеру РЭМ. При этом информацию получают не в традиционно используемых вторичных электронах, а в режиме считывания отраженных электронов. Для определения направления наклона анализируемой фасетки излома информация регистрируется двумя широко апертурными детекторами отраженных электронов RE, RE2). Для обеспечения высокой чувствительности к слабому сигналу отраженных электронов в качестве приемника использованы солнечные батареи [86-88].  [c.217]

Под действием мощной накачки на частоте (О13 населенность уровней El и Ез становится одинаковой и равной ( з + i) 2 = 1,0008 2, Как видим, уровень 3 оказывается инверсно заселенным относительно уровня 2, но разность в заселении этих уровней чрезвычайно мала и не может привести к сколько-нибудь высоким коэффициентам усиления. Аналогичные оценки, проведенные для Г = 4,2 К (жидкий гелий), показывают, что при этой температуре ( 3-f -Ь i)/2 = 1,07 2. Таким образом, понижение температуры рабочего Еещества с комдатной до л 4 К повышает инверсную заселенность на два порядка. Этим объясняется тот факт, что квантовые усилители СВЧ диапазона работают, как правило, при температуре жидкого гелия и используются в стационарных установках в высокочувствительных приемниках радиолокационных и ра-диотелескопических систем, в системах связи и т. д. Основным их преимуществом является исключительно низкий уровень собственных шумов. По величине отношения сигнал/шум они примерно в 1000 раз превышают обычные усилители СВЧ диапазона. Это позволяет с их помощью принимать сигналы, не улавливаемые обычной электронной аппаратурой.  [c.336]

Для аналогичных исследований при 20 К применяли устройство для испытания на одноосное растяжение с кри остатом разового использования и стационарный криостат Кривые напряжение— деформация при одноосном растя жении строили с помощью месдозы, механического тензо метра с базой 25,4 мм и тензодатчиков с базой 12,7 мм Три двухкоординатных самописца регистрировали сигналы от месдозы (нагрузка), тензометра и продольного тензо датчика (удлинение) и поперечного тензодатчика (сжатие)  [c.60]


Эргодический процесс является прежде всего стационарным случайным процессом. Стационарность предполагает независимость функций плотности распределения вероятностей от сдвига по времени. Вследствие этого для стационарных случайных процессов все моменты распределения также не зависят от начала отсчета времени. Стационарность является необходимым, но не достаточным условием эргодичности случайного процесса. Для того чтобы стационарный процесс был эргодическим, нужно, чтобы характеристики, полученные усреднением по одной реализации, не отличались от аналогичных характеристик, полученных усреднением по другим реализациям. Свойство эргодичности существенным образом облегчает анализ акустических сигналов. По-, скольку для них в этом случае средние статистические величины равны средним по времени, все функции плотности распределения вероятностей могут быть получены не по совокупности реализаций, а лишь по одной из них. Так, функция р(х), не зависящая от времени t в силу стационарности процесса, равна относительному времени пребывания сигнала п(О между уровнями а и ж -f Ад , а функция корре.чяции равна среднему по времени произведению  [c.14]

Опыт показывает, что случайные акустические сигналы машин и механизмов, если только они стационарны, всегда эрго-дичны. Кроме того, детерминированные периодические сигналы также можно рассматривать как реализации некоторых эргодических случайных процессов. Пусть, например, акустический сигнал является синусоидальным, а sin at, где а и постоянны. Акустические сигналы множества идентичных машин можно представить в виде = а sin ( i-l-случайная величина, определяемая начальными условиями и принимающая определенное значение для каждой из машин. Считая, что все значения фазы ф равновероятны, нетрудно показать, что всевозможные распределения вероятностей сигнала (i), посчитанные по совокупности реализаций, совпадают с аналогичными распределениями, посчитанными по какой-либо одной реализации, и  [c.14]

Для измерения коэффициентов корреляции R при нулевой временной задержке и косинуса угла сдвига фаз между вибрационными процессами используются рассмотренные уже двухканальные синхронные и синфазные анализирующие устройства (фильтры измерителя колебательной мощности, двухканальный гетеродинный анализатор на базе анализаторов типа С53, устройства типа 2020 фирмы Брюль и Кьер ) совместно с умножающим устройством, фазочувствительным вольтметром типа ВФ-1 или коррелятором фирмы Диза типа 55Д70. При отсутствии фазосдвигающей цепи в измерительных трактах осуществляется измерение вещественной части коэффициента корреляции и косинуса угла сдвига фаз. Поворот фазы на 90° позволяет получить значения мнимой части коэффициента корреляции 1ш и синуса угла сдвига фаз между процессами. При синусоидальных процессах показания умножителя, фазочувствительного вольтметра или коррелятора пропорциональны косинусу угла сдвига фаз, а при стационарном случайном характере в полосе частот — коэффициенту корреляции между исследуемыми процессами. Для получения непосредственного отсчета R или os а, например на шкале коррелятора, необходимо (при автоматических измерениях) использовать блоки автоматической регулировки усиления (АРУ) с целью поддержания постоянной величины поступающих на коррелятор сигналов.  [c.437]

По принципу формирования сигналов системы делят на непрерывные аналоговые и дискретные с использованием элементов цифровой техтгки. Наибольшее расиространеаие при имитации широкополосной случайной вибрации получили многоконтурные, непрерывные, статические системы автоматической стабилизации со стационарным вибровозбудителем. Основная цель построения таких систем — автоматизация настройки ГШСВ с учетом искажающего влияния вибровозбудителя.  [c.319]

На рис, 18 приведена обобщенная структурная схема комплекса имитации случайной вибрации с автоматическим управлением. Стационарные случайные сигналы от генераторов шума, находящихся в блоке 1 генераторов шума, поступают в блок 9. формирования, состоящий из устройств формирования и управления параметрами характеристик и сумматоров канальных сигналов. Сформированный сигнал поступает на вход вибростенда 3, в котором воспроизводится вибрация. После преобразования в электрический сигнал воспроизведенные вибропродессы подаются на вход блока 4 анализатора, в котором осуществляется анализ и измеряются требуемые параметры статистических характеристик имитируемой вибрации, значения которых сравниваются в блоке 5 сравнения с задаваемыми блоком 6 программ. Сигналы рассогласования, снимаемые с блока 5, управляют с помощью блока 7 управления параметрами формирователя. На этом принципе построен отечественный автоматический комплекс имитации вибрации СПАВ-1.  [c.319]

Принципиальная схема проведения эксперимента изображена на рисунке. Два вибродатчика 4 приклеиваются в районе опор 2 ротора 3. Обработка информации проводится широко распространенными методами с применением серийной аппаратуры. Запись сигналов вибрации осуш ествляется на магнитограф 7 и кольцующ ее устройство 8, на котором регистрируются избранные режимы работы, обусловленные методикой эксперимента, с целью получения стационарности. В дальнейшем сигнал обрабатывается с помощью узкополосного спектроанализатора 11 и регистрируется на самописце 14 или наблюдается на блоке показаний 13. В исследованиях использовалась аппаратура RFT (ГДР).  [c.130]

Из изложенного следует, что БАЗА СИГНАЛА является наиболее информативным параметром процесса, подлежащего регистрации, при оценке максимально необходимого объема памяти и выборе типа регистратора. При исследовании динамики современных машин и механизмов удобно разделить весь частотный диапазон изучаемых процессов на пять областей инфраниз-ких О ч- 10 Гц., низких 10- 50 Гц, средних 50 5-10 Гц, высоких 5 10 1 10 Гц. и сверхвысоких частот 1 10 - 1 10 Гц,. которые для краткости можно назвать соответственно областями квазистатики, медленной, средней, быстрой, ударной динамики [6] — [8]. Такое деление, хотя и является чисто условным, относительно соответствует возможностям существующей регистрирующей аппаратуры различных типов и поэтому достаточно удобно для того, чтобы характеризовать особенности ее применения. Соответствующие области, построенные в координатах полоса частот AF Гц) — длительность регистрируемого процесса Гпр (с) , и распределения основных видов динамических процессов в различных машинах и механизмах в указанных областях показаны на рис. 2. Результаты получены на основании анализа 250 процессов, взятых из более чем ста различных литературных источников, отражающих результаты исследования практически всех видов современного машинного оборудования. В этих работах рассматривалось изменение таких основных видов механических параметров, как моменты, ускорения, перемещения, усилия, давления, вибрации в гидро- и пневмомеханизмах, электромоторах и т. д. Сетка линий В, нанесенная на рис. 2, представляет линии равной базы. Линия В = 10 близка к теоретическому пределу минимально возможного значения базы для физически реализуемых процессов, а линия В = 10 соответствует границе, разделяющей детерминированные и стационарные сигналы от нестационарных. Как следует из рис. 2, все изучаемые процессы имеют значения базы, лежащие в диапазоне 10 -г- 10 . На основании проведенных исследований можно констатировать, что основное количество динамических процессов, встречающихся в современных машинах и механизмах, расположено в трех областях — медленной, средней и быстрой динамики. Область квазистатики занимают низкочастотные вибрации, а область ударной динамики — ударные волны, скачки давления, упругие удары и сверхзвуковые процессы. Динамические процессы в механизмах позиционирования занимают большую часть области средней динамики и область медленной динамики. Ударные процессы в этих механизмах обычно нежелательны.  [c.18]


Принцип действия тензотелеметрического токосъемника основан на преобразовании информационных электрических сигналов, поступающих от тензодатчиков в телеметрические сигналы с частотно-импульсной модуляцией (ЧИМ), бесконтактной передаче их к приемной стационарной аппаратуре и преобразовании ЧИМч игналов в исходную форму информационных сигналов.  [c.242]


Смотреть страницы где упоминается термин Сигналы стационарные : [c.48]    [c.430]    [c.166]    [c.172]    [c.45]    [c.54]    [c.55]    [c.109]    [c.432]    [c.20]    [c.268]    [c.193]    [c.47]    [c.52]    [c.117]   
Цифровые системы управления (1984) -- [ c.241 ]



ПОИСК



Взаимосвязь сигнала первичного преобразователя и измеряемых величин в стационарных условиях . Варьирование эффективной теплопроводности первичного преобразователя

Детектирование стационарных ядерных сигналов

Добрынин, Т. П. Салихова, М. С. Фельдман. Оценка стационарности и эргодичности вибро акустических сигналов машин

Нестационарность, обусловленная отражением от границы стационарного сигнала движущегося источника

Преобразование стационарного случайного сигнала

Сигнал

Сигнал звукового вещанияаналоговый стационарный

Характеристики линейных стационарных систем при детерминированных входных сигналах

Характеристики линейных стационарных систем при случайных входных сигналах



© 2025 Mash-xxl.info Реклама на сайте