Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

База сигнала

В работе рассмотрены вопросы автоматической регистрации экспериментальных данных при исследовании динамических процессов в современных машинах и механизмах. Сформулированы задачи создания автоматических регистраторов. Предлагается использовать понятие БАЗА СИГНАЛА регистрируемого процесса для оценки качества применяемых регистраторов. Определены основные требования по быстродействию и информационной емкости, предъявляемые к устройствам автоматической регистрации. Намечены перспективные пути решения поставленных задач с использованием техники современных запоминающих устройств.  [c.93]


Для одиночного широкополосного ЛЧМ-имнульса длительностью Ги, полосой спектр является равномерным с полосой АР база сигнала — произведение полосы на длительность она определяет коэффициент сжатия  [c.78]

Часто используемая величина, так называемая база сигнала в данном случае находится в пределах В = 1-3, и, по принятой терминологии, сигнал, излучаемый электроискровым источником, относится к классу простых сигналов,  [c.74]

Здесь (с/ш)о обозначает отношение сигнал/шум перед обработкой сигнала. База сигнала показывает, во сколько раз улучшится отношение сигнал/ шум при сжатии импульса и во сколько раз ухудшится при его растяжении. При больших значениях базы сигнала можно путем его сжатия обнаружить сигнал, который находится глубоко под уровнем шума.  [c.421]

Эффективная длина импульса, которая является критерием достижимой разрешающей способности, может быть определена как отношение длины Т модулированного по частоте сигнала и базы сигнала ТВ. Следовательно, эффективная длина импульса равна обратному значению ширины полосы.  [c.421]

Средняя частота МПх 6 1000 Ширина полосы В МПх 5 500 Длительность сигнала Г мкс 4 512 База сигнала ТВ 45 5100 Ошибка фазовой характеристики градус 0,6 3,5  [c.430]

Для описания кодированного сигнала (9.23) используются две основные величины средняя частота /о и ширина полосы В, которая равна обратному значению длины сегмента т. Важной величиной является произведение длительности сигнала иа ширину полосы, называемое базой сигнала (см. разд. 9.1), которое равно числу сегментов в сигнале  [c.431]

Число сегментов в кодированном сигнале, согласно выражению (9.25), равно базе сигнала, которая показывает, во сколько раз отношение сигнал/шум на выходе согласованного фильтра, принимающего кодированный сигнал, лучше, чем на его входе. У фильтра, возбуждающего кодированный сигнал, база указывает на ухудшение шумовых свойств на выходе.  [c.434]

Создаваемые на базе МВК Эльбрус вычислительные комплексы имеют высокие показатели надежности и достоверности обработки информации за счет модульного принципа построения и наличия системы реконфигурации, которая при возникновении сигнала неисправности от системы аппаратного контроля модуля автоматически исключает его из состава комплекса и восстанавливает прерванный вычислительный процесс.  [c.334]

Для оценки результатов требуется наличие базы данных по акустической эмиссии, наблюдающейся при стабильном росте трещин в материале, аналогичном примененному при изготовлении контролируемой конструкции. Расчет условий роста трещин выполняют в терминах механики разрушений. Во внимание принимают источники акустической эмиссии при условии, что их не менее 5 (для газовых баллонов) и 10 (для сосудов) в области радиуса, составляющего 10% от расстояния между датчиками. Для сталей класса прочности 275-355 МПа (по пределу текучести) в учитываемые источники включают те, амплитуда сигнала от которых превышает 50 бВ. Испытания приостанавливают, если наблюдаются скачки амплитуды на 20 бВ выше среднего уровня. Соответствующие источники тщательно исследуют.  [c.181]


В качестве быстродействующего ключа для получения незатухающих высокочастотных колебаний может использоваться полупроводниковый транзистор. Через транзистор (рис. 232) конденсатор Ск колебательного контура соединяется с источником постоянного тока. Пока на базу транзистора не подается управляющий сигнал, ток через него не проходит, конденсатор отключен от источника постоянного тока. При подаче управляющего  [c.235]

Зависимость формы огибающей сигнала дифференциального проходного ВТП от длины узких поверхностных дефектов глубиной = 0,05 при Т1 = 0,64 и базе = 6/2/ и = 0,8 (Ь — расстояние между короткими измерительными обмотками) показана на рис. 54. При / > 2 амплитуда импульсов практически остается неизменной, а расстояние между пиками импульсов увеличивается и становится равным относительной длине дефекта При <3 0,2 форма импульса практически не отличается от формы, соответствующей = 0,22. Исследования показывают, что с уменьшением базы сокращается длина зоны контроля и уменьшается амплитуда импульса огибающей, поскольку зоны контроля измерительных катушек при малых 6 перекрываются. Оптимальное значение да 0,25-t-0,5, при этом амплитуда импульса огибающей уменьшается не более чем на 30 % от максимального значения, соответствующего 6 1. Увеличение глубины дефекта от = 0,025 до = 0,2 не влияет существенно на форму им-  [c.123]

Установив тензометр на поверхности испытываемой детали (образца) и прижав его к последней с помощью струбцины 21 , создают начальную нагрузку и, вращая диск лимба, вывинчивают микрометрический винт до его соприкосновения с контактом пера. При этом электрическая цепь замыкается, что узнается по электрическому сигналу. В момент появления сигнала по шкале лимба снимается отсчет Ль после чего вращением лимба в обратную сторону электрическая цепь прерывается и прекращает действие сигнала. Затем нагрузка увеличивается. Под действием повышенной нагрузки исследуемый элемент деформируется, вследствие чего участок I (база прибора) изменяет свою длину на величину А1, а призма с пером поворачивается в ту или другую сторону, что вызывает изменение расстояния между контактами. Вращая снова лимб, доводят контакты винта и пера до соприкосновения, определяемого по электросигналу, и снимают по лимбу следующий отсчет Лг. Разность показаний прибора Аг—А = АА пропорциональна величине абсолютной деформации Д/, т. е. Д/ = /С-ДЛ, где К—коэффициент пропорциональности, равный цене одного деления шкалы лимба. Значение коэффициента К определяется из следующих соображений. Так как шаг. микрометрического винта равен 0,5 мм. а шкала лимба имеет 100 делений, то его поворот относительно указателя на одно деление соответствует поступательному перемещению винта на величину 0,5/100 = 0,005 дз . Следовательно, разность отсчетов АЛ является мерой перемещения 5 конца пера, т. е. 5 = 0,005 АЛ. Так как призма с пером образует двуплечий рычаг с отношением плеч ------= 5, то перемещению  [c.58]

Использование радиационной печи конструкции, показанной па рис. 5.1.3, с малым градиентом температурного поля па рабочей длине образца позволяет применять как поперечные, так и продольные деформометры. Последнее существенно в случаях, когда необходимо получить большой сигнал по деформациям, ибо база деформометра может быть увеличена до 30 мм при обеспечении указанного выше предельного градиента 1—2%.  [c.220]

Для ферромагнитных материалов эта задача значительно облегчается путем использования так называемого магнитоупругого эффекта, т. е. того обстоятельства, что механические напряжения, приложенные к контролируемому изделию, резко изменяют его магнитные характеристики [1, 2]. Датчики, работающие по этому принципу, обладают достаточно высокой чувствительностью, большой выходной мощностью, малой базой измерения, допускают возможность бесконтактного измерения. Однако им присущи и некоторые недостатки нелинейность нагрузочной характеристики и магнитоупругий гистерезис, под которым понимается неполное совпадение кривых величина выходного сигнала — величина приложенных напряжений при нагрузке и разгрузке контролируемого изделия. Для снижения влияния этих факторов необходимо правильно выбрать рабочий режим датчика, что в свою очередь требует знания особенностей проявления магнитоупругого эффекта в каждом отдельном случае.  [c.203]


Наибольший интерес представляют пакетные, групповые и катящиеся преобразователи. Так, пакетные преобразователи представляют собой отдельные пьезоэлементы, собранные в пакет. В результате расчета колеблющегося прямоугольного пьезоэлемента было установлено, что для возбуждения упругого импульса, равного периоду собственных колебаний, пьезоэлемент должен иметь размеры, обеспечивающие кратность частот мод колебаний прямоугольного элемента. Возбуждая такой пьезоэлемент электрическим импульсом, в спектре которого отсутствуют частотные составляющие, равные кратным частотам, получают короткий упругий импульс. При длительности такого электрического импульса, равной одному периоду собственных колебаний пьезоэлемента, длительность упругого импульса будет также равна одному периоду, при длительности электрического импульса равного двум, трем и более периодам длительность упругого импульса соответственно будет равна двум, трем и более периодам. Таким образом, данные преобразователи позволяют управлять длительностью упругого сигнала. Однако практически для реализации эхо-импульсного метода они не пригодны, так как не обеспечивают высокой направленности при излучении и приеме упругих волн. Основной помехой при приеме упругих волн являются поверхностные волны, которые возникают при возбуждении ненаправленного преобразователя. Для обеспечения направленности в главном направлении (перпендикулярно поверхности, на которой расположен преобразователь) предложен метод группирования элементарных источников. Группирование позволяет существенно увеличить направленность и уменьшить уровень поверхностных волн. Различают линейное и базисное группирование. Линейное группирование полностью не исключает образования волн помех, оно их локализует в определенном направлении. Для исключения образования поверхностных волн предложен преобразователь, в котором пьезоэлементы располагают на круговой базе.  [c.86]

Продольные деформации измерялись по стандартной методике, принятой в исследованиях, проволочными тензодатчиками с базой 5—10 мм. При определении их тензочувствительности динамической тарировкой было установлено, что коэффициент тензочувствительности соответствует коэффициенту, указанному заводом-изготовителем, и эта величина использовалась для расчета деформаций по регистрируемой осциллограмме сигнала.  [c.144]

В последнее время работы в области магнитных аналоговых элементов направлены на создание высоконадежного комплекса быстродействующих магнитных решающих элементов и аналоговых запоминающих устройств для систем автоматического управления, в том числе для самонастраивающихся и самообучающихся систем. Предложены новые принципы построения магнитных интегрирующих усилителей без использования накопительных конденсаторов, в том числе интеграторов, практически не имеющих дрейфа выходного напряжения, что достигается образованием в обмотке сердечника сигнала обратной связи, пропорционального производной выходного напряжения. Разработаны аналоговые запоминающие устройства с высокой точностью и неограниченным сроком хранения информации на базе разветвленных магнитных сердечников с прямоугольной петлей гистерезиса. Магнитные аналоговые запоминающие устройства позволяют создать интеграторы, практически не имеющие дрейфа выходного напряжения, и устройства для дифференцирования медленно изменяющихся сигналов.  [c.265]

В решении задач адаптации (в начале ее становления) много внимания уделялось способам обработки, в том числе и выходного сигнала. Все это может быть использовано как в теоретическом, так и в прикладном плане. В то же время общий подход в теории наблюдаемости также служит теоретической базой адаптации.  [c.48]

Ниже показаны примеры построения схем автоматического регулирования температуры при одноканальном (рис. 9), двухканальном (рис. 10) и программном автоматическом регулировании температуры (рис. И) температурных камер (печей) с тремя нагревательными секциями на базе серийно выпускаемых высокоточных регуляторов температуры ВРТ-3. Схемы отличаются количеством и структурой входных элементов. Сигнал с термоэлектрических преобразователей ТП поступает на вход одного или двух измерительных блоков И-102 и преобразуется в соответствии с выбранным законом регулирования в одном или двух регулирующих блоках Р-111 (рис. 9, 10). При программном изменении температуры (рис 11) на вход Р-111 поступает разность сигналов программного регулятора П (1830 БПУ) и нормирующего преобразователя Пр сигнал последнего пропорционален текущему значению температуры. Выходная часть схем аналогична. Сигналы через подстроечные элементы R1, R2 и R3 поступают на  [c.480]

Подналадчики, т. е. устройства, выявляющие по результатам измерений обрабатываемой детали положение режущего инструмента. В случае, если режущая кромка инструмента выходит за определенную границу, подналадчики компенсируют это или подают сигнал о необходимости подналадки режущего инструмента относительно установочных баз. Подналадчики полностью не определяют размер изготовляемой детали, как это делают устройства, контролирующие детали в процессе обработки.  [c.104]

Еще большими возможностями для переналадки на другой типоразмер детали обладают измерительные устройства, построенные на базе измерительных головок, которые во время обработки детали хранятся в инструментальном магазине станка, а при измерениях устанавливаются в резцедержателе. Измерение включается в цикл обработки и программируется как переход. На рис. 3 показано взаимодействие основных узлов станка при проведении процесса измерений [6]. Сигнал с ИГ передается в систему управления станком но каналу инфракрасного излучения, а передача  [c.20]

Используя понятие БАЗА СИГНАЛА В = 2AFTnp [5] и учитывая (2), выражение (1) можно записать в виде  [c.17]


Из изложенного следует, что БАЗА СИГНАЛА является наиболее информативным параметром процесса, подлежащего регистрации, при оценке максимально необходимого объема памяти и выборе типа регистратора. При исследовании динамики современных машин и механизмов удобно разделить весь частотный диапазон изучаемых процессов на пять областей инфраниз-ких О ч- 10 Гц., низких 10- 50 Гц, средних 50 5-10 Гц, высоких 5 10 1 10 Гц. и сверхвысоких частот 1 10 - 1 10 Гц,. которые для краткости можно назвать соответственно областями квазистатики, медленной, средней, быстрой, ударной динамики [6] — [8]. Такое деление, хотя и является чисто условным, относительно соответствует возможностям существующей регистрирующей аппаратуры различных типов и поэтому достаточно удобно для того, чтобы характеризовать особенности ее применения. Соответствующие области, построенные в координатах полоса частот AF Гц) — длительность регистрируемого процесса Гпр (с) , и распределения основных видов динамических процессов в различных машинах и механизмах в указанных областях показаны на рис. 2. Результаты получены на основании анализа 250 процессов, взятых из более чем ста различных литературных источников, отражающих результаты исследования практически всех видов современного машинного оборудования. В этих работах рассматривалось изменение таких основных видов механических параметров, как моменты, ускорения, перемещения, усилия, давления, вибрации в гидро- и пневмомеханизмах, электромоторах и т. д. Сетка линий В, нанесенная на рис. 2, представляет линии равной базы. Линия В = 10 близка к теоретическому пределу минимально возможного значения базы для физически реализуемых процессов, а линия В = 10 соответствует границе, разделяющей детерминированные и стационарные сигналы от нестационарных. Как следует из рис. 2, все изучаемые процессы имеют значения базы, лежащие в диапазоне 10 -г- 10 . На основании проведенных исследований можно констатировать, что основное количество динамических процессов, встречающихся в современных машинах и механизмах, расположено в трех областях — медленной, средней и быстрой динамики. Область квазистатики занимают низкочастотные вибрации, а область ударной динамики — ударные волны, скачки давления, упругие удары и сверхзвуковые процессы. Динамические процессы в механизмах позиционирования занимают большую часть области средней динамики и область медленной динамики. Ударные процессы в этих механизмах обычно нежелательны.  [c.18]

В схеме с общим катодом (эмиттером) входйой сигнал подается на сетку (базу), а выходной снимается с анода (коллектора) (рис. 3.2,. а и г). В схеме с общей сеткой (базой) сигнал подается на катод (эмиттер), а снимается также с анода (коллектора) (рис. 3.2, б и 5). В схеме с общим анодом (коллектором) сигнал подается на сетку (базу) и снимается с катода (эмиттера). Такой каскад называется также катодным (эмиттерным) повторителем (рис. 3.2, в и е).  [c.94]

Важной величиной, характеризующей фильтры растяжения и сжатия, является произведение ширины полосы частотной мбдуляции В и длительности частотно-модулированного импульса Т, называемое базой сигнала. База сигнала определяет изменение отношения сигнал/шум при сжатии (с/ш)с либо растяжении (с/ш)р сигнала,  [c.421]

После анализа ПЗ с учетом элем(1нтн0й базы проектант строит структурную схему объекта проектирования для системотехнического уровня. При зтом многомерный электронный тракт воспроизводится одним каналом в предположении, что все остальные каналы идентичны использование цифровой и аналого-цифр эвой обработки сигнала учитьшается введением запаздьтающего звена с передаточной функцией W (р) =  [c.144]

Особенносш проектирования ОЭП с использованием пакета прикладных 1фограмм ПАСМ. Прежде чем решать задачи анализа объекта проектирования средствами ПАСМ, проектант оценивает выполнимость ТЗ на прибор с учетом уровня элементной базы и технологии, такую возможность предоставляет оператор СЛОЙ ПРОСТРАНСТВА. Его основная функция - моделирование процесса прохождеим некогерентного оптического сигнала 148  [c.148]

Магистральионмодульный принцип построения УСО в стандарте КАМАК позволяет решать различные задачи на единой технической базе, обеспечивает гибкость системы при перестройке ее на другое исследование. Для согласования датчиков и модулей КАМАК требуются специальные устройства нормализация и формирования, обеспечивающие необходимый уровень и форму сигнала.  [c.204]

Существуют приемы для определения вида выявляемых дефектов. Один из них реализуется в дефектоскопах с разверткой магнитограммы на экране осциллографа, по которой можно судить о конфигурации дефектов. Другой прием основан на том факте, что поле поверхностных дефектов убывает с удалением от поверхности детали быстрее, чем поле внутренних дефектов. Это различие можно использовать, если на магнитную ленту записать поля дефектов сначала при плотном прижатии ее к поверхности детали, а затем через немагнитную прокладку толщиной 0,5—1 мм между магнитной лентой и деталью. Считываемый сигнал при этом от внутренних дефектов изменится значительно меньше, чем от поверхностных. Для различения наружных и вн.утренних дефектов могут быть использованы также такие приемы, как считывание информации с ленты на различных расстояниях от нее и использование в качестве преобразователей феррозондов-градиентометров с разной базой (разными расстояниями между их сердечниками).  [c.49]

Для контроля протяженных объектов широкого сортамента (типоразмеров, марок материалов и т. д.) разработаны универсальные дефектоскопы тиров ВД-ЗОП,- ВД-31П. Универсальность обеспечивается применением четырех частот возбуждающего тока, использованием ВТП со сменными катушками ряда типоразмеров, наличием регулируемых фильтров, блока счетчиков общего числа прутков и числа дефектных прутков, а также осцил-лографнческого индикатора и скоростного самописца, предназначенного для выбора оптимальных режимов работы и документации процесса контроля. В дефектоскопах используются трансформаторные проходные ВТП с возбуждающей обмоткой, имеющей отношение длины к диаметру в пределах единицы, и двумя короткими измерительными обмотками, включенными в мостовую схему (см. рис. 61). При этом база значительно меньше единицы. Ввиду малой относительной длины возбуждающей обмотки необ-ходимо с помощью фазорегулятора уменьшать влияние поперечной вибрации детали (см. рис. 67, б), выбирая фазу опорного напряжения фазового детектора. Па выходе фазового детектора включен ряд перестраиваемых фильтров, с помощью которых в соответствии со скоростью контроля ослабляется влияние мешающих факторов, обусловленных изменением о и размеров объекта. Отфильтрованный сигнал поступает на пороговое устройство, соединенное с блоком автоматической сортировки и маркером. При ко ггроле ферромагнитных материалов влияние их структурной неоднородности уменьшают подмагничиванием постоянным магнитным полем.  [c.140]

В. А. Барвинок и Г. М. Козлов определяли коэффициент Пуассона плазменных покрытий звуковым методом, путем возбуждения в образце стоячей волны первого тона [89]. Этот динамический способ выгодно отличается от статических испытаний, так как усиление переменного сигнала от тензорезисторов не составляет особых затруднений. В основе метода лежит особенность деформации стержня постоянного поперечного сечения при возбуждении в нем стоячей волны первого тона. Периодические продольные деформации растяжения я сжатия с частотой собственных колебаний стержня вызывают поперечные сокращения слоев материала, величина которых зависит от коэффициента Пуассона. Эти деформации измеряются тензорезисто-рами типа 2ФКПА с базой 5 мм и сопротивлением 200 Ом, которые наклеиваются на образец прямоугольного сечения. Схема для измерения коэффициента Пуассона состоит из двух мостов Уитстона, один из которых служит для определения продольной деформации, другой — для измерения поперечной деформации. Коэффициент Пуассона находится по формуле  [c.53]


Система записи циклограмм процесса упругопластического деформирования лри циклически, меняющейся температуре включает электронный тепловой прибор, который является регулятором процесса нагрева и охлаждения и одновременно задатчиком сигнала, пропорционального температуре нагрева следящую систему, выполненную на базе электронного прибора ЭПП 0 9 М, двухкоординатный прибор ПДС-021М, предназначенный для записи собственно циклограмм упругопластического деформирования, экстензометр поперечной деформации.  [c.33]

При прохождении одним из микрозондов преобразователя зоны с образованием микропластической деформации в процессе начальной усталостной повреждаемости появляется сигнал, который действует на фоне сигнала, поступающего с другого микрозондового преобразователя, установленного на ненагруженной части образца. Исключение влияния внешнего магнитного поля на показания феррозондового прибора достигалось в результате строгого расположения микрозондов перпендикулярно к поверхности контролируемой зоны и измеряющих разность нормальных составляющих полей рассеяния в двух точках, расстояние между которыми являлось базой и было равно 10 мм. Это позволило точно определить зону с развитием усталостной повреждаемости и следить за ней в течение вс го цикла испытаний.  [c.108]

Одним из важнейших факторов повышения технической надежности, а следовательно, и экономической эффективности машин и механизмов является внедренпе методов и средств диагностирования. Бурное развитие вычислительной техники дало возможность оснастить узлы механизмов встроенными система.ми контроля их состояния, машинные агрегаты — автоматизированными системами диапюсч пки па базе микроЭВМ и микропроцессоров, с помощью которых в реальном масштабе времени можно ставить диагноз на основании спектральных характеристик и тонкой структуры внброаку-стического сигнала [1].  [c.20]

До настоящего времени практически единственной приемлемой основой аппаратурного анализа являлась оценка спектра путем фильтрации сигнала гребенкой полосовых фильтров или системой перестраиваемых фильтров. Однако современные достижения микроэлектроники, предоставившие в руки экспериментаторов компактные универсальные средства цифровой обработки сигналов на базе микропроцессоров, открывают широкую перспективу построения анализаторов спектра на основе эффективных алгоритмов дискретных преобразований. К ним относятся алгоритмы дискретного преобразования Фурье (ДПФ), алгоритмы дискретного спектрального анализа в различных ортогональных базисах (Уолша, Хаара и т. д.), а также разработанные на их основе алгоритмы быстрых преобразований [3]. При этом в качестве признаков сигнала х (t), представленного временным рядом дискретных отсчетов X [п] объемом N, выступает N-мернъш вектор Sx спектральных отсчетов  [c.123]

Аналого-цифровой преобразователь (АЦП) регистратора выполнен на базе серийно выпускаемого АЦП в гибридном исполнении типа Ф7077/2 с временем преобразования 3 мкс. Для улучшения его динамических характеристик к нему дополнительно разработано устройство выборки и хранения входного сигнала. Сравнительно большие габариты АЦП Ф7077/2 не позволяют создавать многоканальные регистраторы с параллельными каналами регистрации. Поэтому в регистраторе Н070 выбран мультиплексный режим работы.  [c.128]


Смотреть страницы где упоминается термин База сигнала : [c.573]    [c.235]    [c.211]    [c.155]    [c.123]    [c.342]    [c.207]    [c.34]    [c.315]    [c.347]    [c.362]    [c.397]    [c.469]    [c.482]   
Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах (1990) -- [ c.421 , c.423 , c.430 , c.431 ]



ПОИСК



База данных быстрых сигналов

Базы

Сигнал



© 2025 Mash-xxl.info Реклама на сайте