Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интерференция волн монохроматических

Интерференция волн (случай, когда колебания в слагаемых волнах происходят вдоль одной линии). Волны называются когерентными, если в произвольной точке их встречи разность фаз колебаний остается постоянной. Монохроматические волны одинакового периода и частоты всегда являются когерентными.  [c.71]

Если волны El и Ег создаются двумя совершенно независимыми источниками, то степень когерентности равна нулю и интенсивность в точке Р равна сумме интенсивностей. В другом предельном случае — при интерференции двух монохроматических волн — степень когерентности порождающих их гармонических колебаний равна единице.  [c.180]


Такие интерференционные полосы должны наблюдаться невооруженным глазом. Но оказывается, что наблюдаемая на опыте равномерная освещенность экрана абсолютно не соответствует приведенному выше расчету интерференции двух монохроматических волн. Попытки постановки подобных опытов неодно-  [c.182]

Вспоминая рис. 5.5, на котором сопоставлены результаты интерференции двух монохроматических и двух квазимонохроматических волн, можно оценить, как видоизменится при использовании частично когерентного света картина дифракции на двух щелях V = 1), представленная на рис. 6.4(3. Очевидно, что если V < 1, то максимумы будут по величине меньше, а минимумы отличны от нуля (рис. 6.47). Приводимые ниже расчеты должны подтвердить справедливость этого качественного рассмотрения.  [c.306]

Хотя изложение основ рентгеноструктурного анализа не является задачей этой книги, упомянем здесь об интерференционном методе исследования кристаллов, в котором используют дискретные рентгеновские спектры характеристические лучи) — резкие пики, появляющиеся на сплошном фоне рентгеновского излучения при больших ускоряющих потенциалах. Кристаллографическими исследованиями было установлено, что в любом кристалле можно обнаружить определенные плоскости, в которых атомы или ионы, составляющие его решетку, упакованы наиболее плотно. Такие плоскости отражают монохроматическое рентгеновское излучение, и, следовательно, может происходить интерференция волн, отраженных различными плоскостями. Очевидно, что усиление отраженной волны произойдет лишь под вполне определенным углом 0 (рис. 6.78). Если разность хода (А = АО + ОВ) равна целому числу длин волн, то  [c.351]

Точные измерения в поляризационно-оптическом методе обычно производят с использованием монохроматического света. Однако белый свет позволяет повысить путем использования цветных полос точность измерений в областях, где имеется небольшая величина двойного лучепреломления. Белый свет состоит из волн всех длин видимого спектра. Так как коэффициент оптической чувствительности С в соотношении (3.4) не зависит от длины волны, то при различных величинах разности главных напряжений станет возникать интерференция волн, соответствующих различным цветам спектра. В итоге получается картина изохром, состоящая из цветных полос и соответствующая полю напряжений. Цвет каждой полосы поля изохром соответствует дополнительному цвету для той длины волны, которая оказалась погашенной. В табл. 4.1 приведены приближенные величины разностей хода, соответствующих различным цветам в поле изохром. Надо отметить, что в этой таблице приведены лишь разности  [c.111]


Продемонстрированный подход к описанию ДОЭ является обобщением подхода, применяемого при описании голографических оптических элементов или просто голограмм, частного случая ДОЭ. Действительно, при голографической записи элемента регистрируется картина интерференции двух монохроматических волн. При этом коэффициент пропускания голограммы является функцией освещенности, создаваемой этими волнами в данной точке [24],  [c.12]

Для того чтобы произошла интерференция объектной и референтной волн, необходимо, чтобы они были когерентными. Если естественный белый свет характеризуется широким спектром волн различной частоты, составляющие которого при визуальном восприятии вызывают ощущения различных цветов, то когерентная волна — волна монохроматическая.  [c.17]

При наблюдении интерференции от монохроматического источника допустимая толщина пленки увеличивается. Она зависит от ширины линии излучения или, что одно и то же, от времени и длины когерентности. Например, ширина зеленой линии излучения ртутной лампы в длинах волн АХ 0,01 нм (X = 502,564 нм). Отсюда для максимально допустимой толщины пластины по формулам (29.6) и (29.7) находим d=S мм.  [c.183]

ИНТЕРФЕРЕНЦИЯ ДВУХ МОНОХРОМАТИЧЕСКИХ ВОЛН 243  [c.243]

Интерференция двух монохроматических волн  [c.243]

При наблюдении интерференции в монохроматическом свете с определенной длиной волны интерференционная  [c.367]

Рис. 8. Интерференция двух монохроматических наборов плоских волн одинаковой частоты. В тех местах, где гребни и впадины одного набора совпадают с гребнями и впадинами другого, происходит сложение волн, в тех же местах, где гребни одного набора волн совпадают со впадинами другого, происходит вычитание волн. Рис. 8. Интерференция двух монохроматических наборов <a href="/info/10059">плоских волн</a> одинаковой частоты. В тех местах, где гребни и впадины одного набора совпадают с гребнями и впадинами другого, происходит сложение волн, в тех же местах, где гребни одного набора волн совпадают со впадинами другого, происходит вычитание волн.
Рис. 11. Интерференция двух монохроматических наборов волн, плоского и сферического. Интерференционная картина имеет форму концентрических колец. Ширина полос и промежутки между ними с увеличением расстояния от центральной оси непрерывно Рис. 11. Интерференция двух монохроматических наборов волн, плоского и сферического. <a href="/info/19426">Интерференционная картина</a> имеет форму концентрических колец. <a href="/info/14757">Ширина полос</a> и промежутки между ними с <a href="/info/356606">увеличением расстояния</a> от центральной оси непрерывно
Случай 1. Положим, что в интерферометр Майкельсона направляется свет от точечного источника (из точки S на рис. 4.20), излучающего монохроматический свет длиной волны X. При незначительном наклоне зеркала 3 относительно 3i наблюдаются полосы равной толщины от слоя воздуха переменной толщины, заключенного между зеркалом 3i и изображением зеркала За в пластинке П. Очевидно, что интенсивность, обусловленная интерференцией лучей, исходящих от некоторой толщины / воздушного слоя, равна  [c.90]

Электромагнитная теория света, заменившая старую волновую теорию, позволила существенно упростить постановку задачи. Но при ее применении к проблеме интерференции возникают трудности, связанные с тем, что в оптике, как правило, имеют дело не с монохроматическими волнами, а с импульсами, или волновыми пакетами. "Синусоидальная идеализация", которая оказалась вполне пригодной для описания широкого класса явлений, рассмотренных в предыдущих разделах, требует видоизменения при истолковании более тонких интерференционных эффектов.  [c.175]

Очевидно, что два гармонических колебания одной частоты всегда когерентны. Гармонические колебания порождают монохроматические волны., способные интерферировать. Равенство частот интерферирующих волн ( i = Ы2) и неперпендикулярность векторов El и Е2 служат дополнительными требованиями, превращающими необходимое условие (5. 5) в достаточное. Правда, следует учитывать, что при oj (02 (точнее, при oi — Ш2 = 5<а, где Soi Ш1, и лю Юг) все же может наблюдаться нестационарная интерференционная картина (биения). Вопрос об интерференции неполяризованных колебаний подробно исследован в 5.4.  [c.178]


Исследуем интерференцию многих световых пучков, возникающую при прохождении плоской монохроматической волны через плоскопараллельную диэлектрическую пластинку с толщиной / и показателем преломления п (рис. 5.52). Показатель преломления среды вне пластинки обозначим я.  [c.238]

Уменьшение видимости полос при интерференции немонохроматических пучков объяснялось в 21 иным способом, а именно, предполагалось, что они являются суперпозицией монохроматических пучков с различными частотами (или длинами волн). Естественно возникает вопрос о взаимоотношении спектрального подхода, изложенного в 21, и временного подхода, использующегося в данном параграфе. Для выяснения этого вопроса напомним, что строго гармоническое (монохроматическое) колебание, по самому своему определению, должно происходить бесконечно долго. Если колебание следует гармоническому закону в течение ограниченного промежутка времени, по истечении которого изменяются его амплитуда, частота или фаза (волновой цуг), то это модулированное колебание можно представить в виде суммы монохроматических колебаний с различными частотами, амплитудами и фазами. Но такое разложение волновых цугов на монохроматические составляющие и дает основу для представления об интерференции немонохроматических пучков. Итак, спектральный и временной подходы к анализу интерференции оказываются разными способами рассуждений об одном и том же явлении, —нарушении когерентности колебаний ).  [c.99]

Очевидно, что чем длиннее цуг, испускаемый атомом, т. е. чем монохроматичнее свет, тем при большей разности хода возможна интерференция. В случае газоразрядных источников света в приборе Майкельсона удавалось наблюдать интерференцию при разности хода около полумиллиона длин волн. Опыты этого рода могут служить для характеристики процессов при излучении атома (см. 22). Обратно, располагая источником монохроматических волн, можно осуществить интерференцию при огромной разности хода и таким образом определить длину волны с очень большой точностью. Для некоторых лазерных источников света (гелий-неоновый лазер, например) ширина спектра излучения составляет 10 —10 с , что позволяет наблюдать интерференцию при разности хода в 10 —10 длин волн.  [c.143]

Две немонохроматические волны от независимых источников не дают интерференции. Однако каждую из них можно представить как совокупность монохроматических волн (метод Фурье). Каждая пара таких монохроматических волн одного периода способна дать устойчивую интерференционную картину. Объяснить, почему наши волны не дают интерференции, хотя все их компоненты попарно интерферируют. (Обратить внимание на результат интерференции двух пар компонент, близких по частоте.)  [c.867]

Поскольку среднее расстояние между атомами в веществе довольно мало, то электроны очень большого числа соседних атомов возбуждаются одним цугом волн, хотя падающий свет может быть далеко не монохроматическим. Поэтому вторичные волны оказываются когерентными как между собой, так и с падающей волной и могут взаимно интерферировать. Этой интерференцией и обусловливаются все процессы отражения, преломления, рассеяния и т. д. Молекулярная теория прохождения света через вещество сводится к разбору этого взаимодействия.  [c.3]

Для осуществления интерференции необходимо, чтобы разность фаз обоих взаимодействующих монохроматических лучей сохранялась при наблюдении постоянной и колебания лежали бы в одной плоскости (когерентность двух волн, получаемая при наличии одного источника) [3]. Эти условия выполняются в установке по следующей схеме, имеющей источник S монохроматического света (фиг. 181, а) поляризатор Р даёт поляризованный свет, обусловливающий когерентность волн кристаллическая пластинка О (или модель) даёт некоторую разность фаз 8 между обоими компонентами, на которые разлагается поступающая в неё волна анализатор А приводит колебания обоих компонентов в одну плоскость.  [c.252]

Здесь 0 —яз—разность главных напряжений, 0 — главное напряжение, действующее вдоль контура (одно из главных напряжений а или 02 в точке контура второе равно нулю) д, —толщина модели А — линейная разность хода двух компонентов поляризованного света, проходящего через рассматриваемую точку модели т — та же разность хода, но выраженная числом длин волн применяемого монохроматического света (порядковый номер полосы интерференции) С см 1дн — коэфициент фотоупругости материала (при Л и г/ в см в  [c.269]

В соответствии с определением предыдущего параграфа мы говорим об интерференции волн, когда при их совместном действии не происходит суммирования интенсивностей. Условием интерференции волн одной и той же чяетоты яв.ляется их когерентность, т е. сохранение неизменной разности фаз за время, достаточное для наб (У0Деа.ИЯ,3 частности, монохроматические волны, т. е. вол ньГ, пор6ж даемые гармоническими колебаниями, когерентны и могут интерферировать (если, конечно, они имеют одинаковый период). Способность когерентных волн к интерференции означает, что в любой точке, которой достигнут эти волны, имеют место когерентные колебания, которые будут интерферировать. Мы будем для простоты предполагать, что обе волны одинаково линейно поляризованы. Результат интерференции определяется разностью фаз интерферирующих волн в месте наблюдения, а эта последняя зависит от начальной разности фаз волн, а также от разности расстояний, отделяющих точку наблюдения от источников каждой из волн.  [c.65]

Голографические методы контроля. Методы основаны на интерференции световых волн. Источником световых волн являются оптические квантовые генераторы, позволяющие получать свет с определенной длиной волны (монохроматические волны) и в определенной фазе колебаний (когерентные волны). Использование лазеров (лазерных диодов) позволяет восстанавливать мнимое объемное изображение объекта в целом либо части этого объекта. Фиксируя на детекторе (фотопластинке или экранр монитора) наложенные изображения состояния объектов (например, без нагрузки и под нагрузкой), получают интерференционные картины, которые являются источником информации о наличии дефектов в объектах контроля. При этом интерференционные картины весьма чувствительны к незначительным перемещениям частей поверхности, которые появляются в области концентрации напряжений объекта контроля вследствие наличия в нем дефекта. Метод, основанный на голографический интерференции световых волн, применяется в основном для анализа напряженно-деформированно-го состояния сварных соединений и контроля за остаточными сварочными напряжениями.  [c.211]


Рис. 11. Общая схема образования стоячей волны — пространственной картины интерференции двух монохроматических когерентных (т. е. синфазных) источников излучения 5i и 5г. В верхней части рисунка показано сечение стоячей волны плоскостью, проходящей через источники 5i и 5г. Пучности — участки, где интенсивность поля максимальна — затушеваны, между ними располагаются узлы. В узлах интенсивность поля мннн-мальна. В трехмерном пространстве пучности образуют гиперболоиды вращения. Расстояние между смежными поверхностями пучностей минимально там, где интерферирующие лучи распространяются навстречу дру ДрУ У (район точки h,), и максимально там, где эти лучи идут приблизительно по одному направлению( район точки Лг)- Юнг фактически регистрировал распределение интенсивности в плоском сечении пространственной стоячей волны в области, где расстояние между смежными поверхностями пучностей достаточно велико (см. нижнюю часть рисунка) Рис. 11. <a href="/info/4759">Общая схема</a> образования <a href="/info/10062">стоячей волны</a> — пространственной картины интерференции двух монохроматических когерентных (т. е. синфазных) <a href="/info/127375">источников излучения</a> 5i и 5г. В верхней части рисунка показано сечение <a href="/info/10062">стоячей волны</a> плоскостью, проходящей через источники 5i и 5г. Пучности — участки, где <a href="/info/19193">интенсивность поля</a> максимальна — затушеваны, между ними располагаются узлы. В узлах <a href="/info/19193">интенсивность поля</a> мннн-мальна. В <a href="/info/347722">трехмерном пространстве</a> пучности образуют <a href="/info/158779">гиперболоиды вращения</a>. Расстояние между смежными поверхностями пучностей минимально там, где интерферирующие лучи распространяются навстречу дру ДрУ У (район точки h,), и максимально там, где эти лучи идут приблизительно по одному направлению( район точки Лг)- Юнг фактически регистрировал <a href="/info/174637">распределение интенсивности</a> в <a href="/info/205745">плоском сечении</a> пространственной <a href="/info/10062">стоячей волны</a> в области, где расстояние между смежными поверхностями пучностей достаточно велико (см. нижнюю часть рисунка)
Рис. 18. Схема записи и реконструкции голограмм по методу Габора. При записи (рис, а) на фотопластинке регистрируется физическая тень объекта — результат интерференции волны И7о йзлучения, рассеянного объектом S, и волны Ws, непосредственно распространяющейся от источника излучения. При реконструкции на голограмму Я направляется излучение того же монохроматического источника 5, который использовался при съемке. Голограмма Н восстанавливает волновой фронт записанного иа ней излучения и с ним истинное изображение объекта О. Однако, кроме этого, восстанавливается некоторая дополнительная волна W и с нею ложное изображение О". Волну W q и изображение О" можно получить, отобразив и О в сферическом фронте волиы ист 9чникд , как в зеркале. Истинное и ложное изображение, а также,, "наблюдатель Л располагаются в этом случае на одной прямой, в результате чего возникает взаимная интерференция, искажающая оба изображения Рис. 18. Схема записи и реконструкции голограмм по <a href="/info/359775">методу Габора</a>. При записи (рис, а) на фотопластинке регистрируется физическая тень объекта — результат <a href="/info/12547">интерференции волны</a> И7о йзлучения, рассеянного объектом S, и волны Ws, непосредственно распространяющейся от <a href="/info/127375">источника излучения</a>. При реконструкции на голограмму Я направляется излучение того же монохроматического источника 5, который использовался при съемке. Голограмма Н восстанавливает <a href="/info/12453">волновой фронт</a> записанного иа ней излучения и с ним истинное изображение объекта О. Однако, кроме этого, восстанавливается некоторая дополнительная волна W и с нею <a href="/info/176020">ложное изображение</a> О". Волну W q и изображение О" можно получить, отобразив и О в сферическом фронте волиы ист 9чникд , как в зеркале. Истинное и <a href="/info/176020">ложное изображение</a>, а также,, "наблюдатель Л располагаются в этом случае на одной прямой, в результате чего возникает взаимная интерференция, искажающая оба изображения
Малый размер диафрагмы обеспечивает корреляцию волн внутри каждой монохроматической полосы, т. е. интерференция волн может иметь место только в пределах каждой монохроматической полосы, что обеспечивает высокое качество в осевой голографии. Необходимо подобрать в зависимости от характера объекта размер щели а и расстояние между призмами Z так, чтобы полосы спектральных линий не перекрывались. С другой стороны, ширина полосы должна быть не слишком малой, чтобы дифрагированный па объекте свет не вышел за пределы когерентного фона. Эту же установку можно использовать для восстановления голограммы, записанной как в белом свете, так и в лазерном по внеосевой схеме. И.5ображения, восстановленные с голограммы, записанной в лазерном спете, наблюдаются как радужные, но без паралакса.  [c.35]

Можно получить волны, пригодные к интерференции, если они возникают в результате разделения одной и той же волны на две части. Обе части волны в отнощении изменения их фазы по времени являются точными копиями исходной. Однако полной аналогии с интерференцией монохроматически волн здесь не получится, поскольку каждая из волн имеет конечное время когерентности (см. 13), в течение которого эти волны действительно. могут интерферировать. Поэтому картина интерференции монохроматических волн является лищь первым приближением в изучении интерференции волн от реальных источ-ииков.  [c.149]

Из (1.35) и (1.36) следует, что коэффициенты Л и Л испытывают осцилляции при изменении соотношения h/K , что объясняется интерференцией волн в слое. Если толщина слоя равна целому числу полуволн h=nK l ), то Zbx p . Таким образом, полуволновой граничный слой как бы не влияет на отражение и прохождение монохроматической волны. При наклонном падении волны это же положение имеет место, когда k h os а=пп, что соответствует условию (1.19) образования нормальных волн в слое. Прохождение через границу улучшает слой, волновое сопротивление которого лежит в интервале между волновыми сопротивлениями протяженных сред. Полное просветление границы D—1, Я=0) достигается при условиях  [c.44]

Частичная когерентность. Немонохроматичность света связана с механизмом излучения. Как мы уже знаем, излучение происходит в виде цугов конечной длины. Вследствие конечности длины цугов атом излучает (см. гл. И) не монохроматический свет, а целый сиектр частот, ширина интервала которого обратно пропорциональна длине цуга. Поскольку цуги волн, излучаемые одним и тем же атомом в разные моменты времени, взаимно не коррелированы, то очевидно, что интерференция произойдет только при встрече волн (полном или частичном нх перекрывании), образуемых из одного и того же цуга. С целью более подробного анализа когерентности в этом случае обратимся к следующему опыту.  [c.77]

Рассмотрим случай нормального падения плоской монохроматической и линейно-поляризованной волны на хорошо отражающую поверхность с относительным показателем преломления п> 1. Поглощением света при распространении пренебрежем. Отра)кен-ная световая волна, когерентная с падающей, будет распространяться в противоположном паправленгпг. В результате произо11дет интерференция двух когерентных волн—. падающей и отраженной. Считая, что в световых явлениях основную роль играет электрический вектор, запишем уравнение падающей световой волны, распространяющейся в положительном направлении оси х, в виде  [c.96]

Следовательно, не исключается возможность наблюдения интерференции от двух источников света, но требуется, чтобы фазы излучаемых ими волн были скоррелированы [т.е. соблюдено условие (5.5)]. Излучение лазера наиболее близко к монохроматической волне, и во многих случаях можно считать разность фаз двух лазерных волн практически постоянной. Поэтому обычно наиболее простым оказывается наблюдение интерференции света при использовании лазерного излучения.  [c.178]

Постановка задачи б шзка к случаю прохождения плоской монохроматической волны через диэлектрическую пластинку или отражения от нее (см. 5.4). Но тогда учитывалась интерференция только двух пучков света (например, отразившихся от передней и задней поверхностей диэлектрической пластинки). Всеми последующими отраженными волнами пренебрегали, что  [c.238]

В 6.3, 6.4 была описана дифракция на заданном отверстии или правильной системе отверстий плоской монохроматической волны. Теперь нужно выяснить, какова видимость дифракционной картины, создаваемой квазимонохроматической волной. Решим эту задачу на примере дифракции на двух отверстиях. В этом случае можно в(зсп0льз0ваться соотношениями, относящимися к интерференции двух пучков, и наглядно представить результаты.  [c.304]

Итак, вспомним, что происходит при дифракции света на двух отверстиях в непрозрачном экране. Интерференция дифрагировавших пучков приведет к появлению дополните.аьных максимумов. При выполнении условия з1пф = тл, где т = О, 1, 2,. . . , возникают главные максимумы. При с 81Пф = л/2, ЗХ/2, 57-/2,. . . образуются минимумы, расположенные между главными максимумами. Если на структуру падает плоская монохроматическая волна, то интенсивность света в этих минимумах равна нулю, а видимость дифракционной картины окажется равной единице  [c.304]


Если -/12(Д0 = 1, то интенсивность в точке Р окажется такой же, как и при интерференции двух строго монохроматических волн частоты v с разностью фаз между колебаниями в точках Oi ИО2, равной ai2(At). В этом случае можно считать колебания в точках Oi и О2 когерентными, но с соответствующим запаздыванием по фазе одного колебания относительно другого.  [c.306]

Опыт показывает, что когда два независимых источника света, например две свечи, или даже два различных участка одного и того же светящегося тела посылают световые волны в одну область пространства, то мы не наблюдаем интерференции и констатируем сложение интенсивностей. После изложенного в предыдущих параграфах мы не можем, конечно, считать результаты такого опыта доказательством несостоятельности волновых представлений о свете. Отсутствие устойчивой (наблюдаемой) интерференционной картины может обозначать только, что наши источники не посылают когерентных волн. Это означает, следовательно, что посылаемые источниками волны — немонохроматические (см. 12). То обстоятельство, что даже с наилучшими в смысле монохроматичности источниками (свечение разреженных газов) мы не можем получить интерференции от независимых источников, есть доказательство того, что ни один источник не излучает строго монохроматического света. Сказанное относится ко всем нелазерным источникам света.  [c.69]

Особый исторический интерес представляет случай интерференции в тонком воздушном слое, известный под именем когец Ньютона. Эта картина наблюдается, когда выпуклая поверхность линзы малой кривизны соприкасается в некоторой точке с плоской поверхностью хорошо отполированной пластинки, так что остающаяся между ними воздушная прослойка постепенно утолщается от точки соприкосновения к краям. Если на систему (приблизительно нормально к поверхности пластинки) падает пучок монохроматического света, то световые волны, отраженные от верхней и нижней границ воздушной прослойки, будут интерферировать между собой. При этом получается следующая картина в точке соприкосновения наблюдается черное пятно, окруженное рядом концентрических светлых и черных колец убывающей ширины ).  [c.125]

Корпускулярная интерпретация опытов Винера. Электромагнитная природа света была впервые экспериментально подтверждена в классических опытах О. Винера (1890), который наблюдал интерференцию от двух монохроматических световых волн, распространяющихся навстречу друг другу. Такие движущиеся в противоположных направлениях взаимно когерентные волны возникают в результате отражения от зеркала световой волны, падающей на него по нормали. При отражении от металлического зеркала фаза колебаний вектора напряженности электрического поля волны изменяется на я, что обеспечивает соблюдение равенства нулю тангенциальной составляющей электрического поля на поверхности металла. Направляя ось Z по нормали к поверхности зеркала, а ось Л"-колли-неарно линии колебаний вектора напряженности S электрического поля волны (рис. 23), можно для падающей и отраженной волн написать  [c.42]

Если пользоваться не монохроматическим, а белым светом, то на экране наблюдаются цветные полосы, окрашенные в цвета спектра, так как длины волн цветов спектра различны и они оказываются в наивыгоднейших условиях интерференции (см. -равенства 67) при различных значениях напряжений. Все точки одной какой-либо изохромы (одноцветной полосы) соответствуют точкам образца с одинаковой разностью главных напряжений di — Og.  [c.135]

Строгое волновое представление пучка лучей , исходящих из некоторого источника, с резко ограниченным конечным поперечным сечением, получается в оптике, по Дебаю, следующим образом берется суперпозиция континуума плоских волн, каждая из которых заполняет все пространство, при этом нормали к входящим в суперпозицию волновым поверхностям изменяются в пределах заданного угла. Вне определенного двойного конуса полны в результате интерференции почти совершенно уничтожают друг друга, так что с ограничениями, связанными с дифракцией, получается волновое представление ограниченного светового пучка. Подобным же образом можно представить и бесконечно узкий лучевой конус, изменяя лишь волновую нормаль совокупности плоских воли внутри бесконечно малого телесного угла. Этим обстоятельством воспользовался фон Лауз в своей знаменитой работе о степенях свободы лучевых пучков ). Наконец, вместо того чтобы использовать, как это до сих пор молчаливо предполагалось, только чисто монохроматические волны, можно варьировать частоту внутри некоторого бесконечно малого интервала и посредством соответствующего подбора амплитуд и фаз ограничить возмущение областью, которая будет сравнительно мала также и в продольном направлении. Таким образом может быть шшучаыо анадихическоа прадртаилениА энергетического пакета сравнительно небольших размеров этот пакет будет передвигаться со скоростью света или в случае дисперсии с групповой скоростью. При этом мгновенное положение энергетического пакета (если не касаться его структуры) определяется естественным образом, как та точка пространства, где  [c.686]

В оптических исследованиях, особенно в том случае, когда имеем дело с монохрбматическим светом, разность хода удобно измерять числом длин волн используемого монохроматического света т. В этом случае величина m будет соответствовать порядковому номеру полосы интерференции, а формулы для напряжений будут иметь вид  [c.68]


Смотреть страницы где упоминается термин Интерференция волн монохроматических : [c.307]    [c.204]    [c.100]    [c.246]    [c.143]    [c.60]    [c.66]   
Оптика (1985) -- [ c.150 , c.151 ]



ПОИСК



Волна монохроматическая

Интерференция

Интерференция волн

Интерференция монохроматических



© 2025 Mash-xxl.info Реклама на сайте