Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отливки Жидкотекучесть

Жидкотекучесть — способность жидкого металла полностью заполнять полости литейной формы и четко воспроизводить очертания отливки. Жидкотекучесть зависит от химического состава, температуры заливаемого в форму сплава и теплопроводности материала формы. Фосфор, кремний и углерод улучшают ее, а сера ухудшает. Серый чугун содержит углерода и кремния больше, чем сталь, и поэтому обладает лучшей жидкотекучестью. Повышение температуры жидкого металла улучшает жидкотекучесть, и чем выше его перегрев, тем более тонкостенную отливку можно получить. Увеличение теплопроводности материала формы снижает жидкотекучесть. Так, песчаная форма отводит теплоту медленнее и расплавленный металл заполняет ее лучше, чем металлическую форму, которая интенсивно охлаждает расплав. Минимально воз-  [c.51]


Жидкотекучесть — это способность металлов и сплавов течь в расплавленном состоянии по каналам литейной формы, полностью заполнять ее полости и точно воспроизводить очертания отливки. Жидкотекучесть зависит от температурного интервала кристаллизации сплава, вязкости и поверхностного натяжения сплава, температуры сплава и формы, теплопроводности материала формы. Наибольшая жидкотекучесть характерна для чистых металлов и эвтектических сплавов, которые затвердевают при постоянной температуре, а наименьшая — для твердых растворов, затвердевающих в широком интервале температур. С увеличением вязкости и поверхностного натяжения сплава жидкотекучесть понижается. При повышении температуры сплава и литейной формы жидкотекучесть увеличивается. Уменьшение теплопроводности литейной формы снижает жидкотекучесть.  [c.271]

Жидкотекучесть бронзы невелика из-за большой разницы в температурах между линиями ликвидус и солидус. По этой же причине бронза не дает концентрированной усадочной раковины и для отливки из бронз высокой плотности (рассеянные усадочные поры по всему объему отливки понижают ее герметичность, в то же время это обстоятельство определяет ее пониженную плотность и малую усадку).  [c.613]

Возможность получения тонкостенных, сложных по форме или больших по размерам отливок без дефектов предопределяется литейными свойствами сплавов. Наиболее важные литейные свойства сплавов жидкотекучесть, усадка (линейная и объемная), склонность к образованию трещин, склонность к поглощению газов и образованию газовых раковин и пористости в отливках и др.  [c.122]

Жидкотекучесть — это способность металлов и сплавов течь в расплавленном состоянии по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки.  [c.122]

Важное значение при заливке форм имеет выбор температуры заливки расплавленного металла. При повышенной температуре заливки возрастает жидкотекучесть металла, улучшается питание отливок, по горячий металл более газонасыщен, сильнее окисляется, вызывает пригар на поверхности отливки. В то время как низкая температура заливки увеличивает опасность незаполнения полости формы, захвата воздуха, ухудшается питание отливки. Температуру заливки сплавов целесообразно назначать на 100—150 С выше температуры ликвидуса.  [c.144]

Белый чугун имеет пониженную жидкотекучесть, что требует повышенной температуры заливки при изготовлении тонкостенных отливок. Усадка белого чугуна значительно больше, чем серого, поэтому в отливках из белого чугуна больше образуется усадочных раковин, пористости и трещин.  [c.163]


Литейные стали имеют плохие литейные свойства пониженную жидкотекучесть, значительную усадку (до 2,5 %), что приводит к образованию усадочных раковин и пористости в отливках стали склонны к образованию трещин.  [c.165]

Недолив — некоторые части отливки остаются незаполненными в связи с низкой температурой заливки, недостаточной жидкотекучестью, недостаточным сечением элементов литниковой системы, неправильной конструкцией отливки (например. малая толщина стенки отливки) и др.  [c.180]

Алюминиевые бронзы отличаются высокими механическими антикоррозионными свойствами, жидкотекучестью, малой склонностью к дендритной ликвации. Из-за большой усадки трудно получить сложную фасонную отливку. Они морозостойки, не магнитны, не дают искры при ударах. По коррозионной стойкости превосходят латуни и оловянистые бронзы.  [c.116]

За счет вращения изложницы достигается большая плотность металла отливки, повышается жидкотекучесть, практически отсутствуют затраты на изготовление стержней. При этом способе литья значительно снижается расход металла, так как отсутствует или очень мала литниковая система. За счет центробежных сил примеси, неметаллические включения скапливаются на внутренней поверхности отливки и могут быть удалены механической обработкой.  [c.39]

Горячив и холодные трещины вызываются в основном недостатками конструкции отливки наличием термических узлов , завышенной температурой заливки, недостаточной податливостью формы и стержней, недостаточной пластичностью металла в интервале температур образования трещин. Спай — сквозная либо поверхностная с закругленными краями щель — получается из-за недостаточной скорости заливки формы, пониженной жидкотекучести, недостаточной эффективности вентиляции формы.  [c.85]

В этих таблицах величины значения жидкотекучести определены методом отливки стандартных спиралей в землю.  [c.193]

Сплавы алюминия и кремния — так называемые силумины— хорошо сопротивляются окислению, дают небольшую усадку при отливке, обладают хорошей жидкотекучестью и прекрасно заполняют литейные формы.  [c.156]

Литейные латуни имеют хорошую жидкотекучесть и другие литейные свойства отливки из них могут быть получены литьем в земляные формы, в кокиль,  [c.212]

Литейные оловянные бронзы применяют главным образом для получения пароводяной (герметичной) арматуры, работающей под давлением, и для отливки антифрикционных деталей (втулки, подшипники, вкладыши, червячные пары и др.). Они находят применение также для изготовления различных деталей в общем машиностроении в тех случаях, когда требуется сочетание высоких коррозионных, антифрикционных свойств, электро- и теплопроводности. Эти бронзы отличаются хорошими литейными свойствами высокой жидкотекучестью, малой линейной усадкой объемная усадка значительна, но рассредоточена равномерно по всему объему, что позволяет получать отливки без применения прибылей и иметь высокий выход годного (80—90%) при литье, т. е. пониженную себестоимость отливки по сравнению с другими литейными сплавами (алюминиевые бронзы, латуни, стали и т. д.). Хотя рассредоточенная (рассеянная) усадка усложняет  [c.224]

Тройные и четверные цинковые сплавы хорошо противостоят ударным на-грузка.м при повышенных температурах. Они обладают хорошей жидкотекучестью, что позволяет получать из них отливки сложной формы и тонких сечений.  [c.271]

Для большинства практических случаев оправдан состав с З.ОО/ц 51 и 2,5ч/оС, причём отливки не особенно хрупки, хорошо обрабатываются и обладают пределом прочности при растяжении до 25 кг мм . Содержание 2,5% С соответствует тонкостенным отливкам снижение содержания углерода повышает жаростойкость и прочность отливок, ухудшает жидкотекучесть и увеличивает усадку и склонность к отбеливанию. В отливках с толстыми сечениями содержание углерода должно быть снижено для размельчения графита и повышения прочности.  [c.54]

Из всех железоуглеродистых сплавов чугун обладает наилучшей жидкотеку-честью, что позволяет отливать из него самые тонкостенные детали с ажурными поверхностями, отливка которых из стали связана с большими трудностями. Кроме того, высокая жидкотекучесть чугуна способствует получению отливок без усадочных раковин, усадочной пористости, без мм,———————-—газовых раковин и других литейных дефектов.  [c.156]


Кремнистый сплав эвтектического состава является наиболее пригодным для литья, так как имеет низкую температуру плавления и небольшой температурный интервал затвердевания. При содержании углерода ниже эвтектического повышается склонность сплава к образованию усадочных раковин и трещин, а жидкотекучесть ухудшается. Сплавы, близкие к эвтектическим, при перегреве металла на 30—60° С над ликвидусом имели длину спирали соответственно 515 и 740 мм, т. е. практически такую же жидкотекучесть, как и низколегированный чугун. Поверхность жидкого металла постоянно покрыта окисной пленкой, практически не реагирующей с материалом формы, поэтому отливки из ферросилида получаются чистыми без следов пригара. Линейная усадка металла находится в пределах 1,6—2,6%.  [c.224]

Корпуса арматуры, корпуса насосов и другие детали сложной формы часто изготавливают путем литья в земляные формы. Металл, идущий на изготовление отливок, должен обладать хорошей жидкотекучестью и малой усадкой. Для изготовления отливок часто используют серый чугун. Он хорошо заполняет форму, дешев, но отливки, изготовленные из него, имеют низкую ударную вязкость. Под воздействием высокой температуры со временем размеры чугунных деталей увеличиваются, а механические свойства ухудшаются. Поэтому серый чугун редко используют при изготовлении объектов котлонадзора.  [c.165]

Стальное литье с большим содержанием С имеет больший объем усадочных раковин. В достаточно перегретой стали повышение практической жидкотекучести с увеличением содержания С благоприятно сказывается на улучшении условий питания отливки из прибыли во время ее кристаллизации. Повышение содержания С положительно сказывается на уменьшении опасности образования  [c.27]

В сплавах, применяемых в качестве теплоносителей, наибольшей жидкотекучестью обладают растворы и сплавы эвтектического состава. При этом кристаллы возникают и растут на холодных стенках канала сплошным слоем, а жидкий металл течет внутри образовавшейся отливки.  [c.61]

Почти в каждой отливке есть места, в которых конструкцией не предусматриваются закругления выступающих углов (например, кромки ребер, литых отверстий и т. п.). Однако это не означает, что здесь может иметь место резкое сопряжение без всякого закругления. Дело в том, что при обычных способах литья в песочные формы жидкотекучесть расплавленного металла и гидростатическое давление, с которым он поступает в полости формы, не могут обеспечить четкого заполнения входящих углов последней. Если форма и будет иметь резкие входящие углы, то металл все равно их не заполнит и сам образует небольшие закругления, называемые литейными (рис. 29). Поэтому, когда имеется в виду, что сопряжения поверхностей, образующих выступающие углы, не должны иметь специального конструктивного  [c.51]

К литейным сплавам относятся силумины. Они подразделяются на 2 тина низкокремнистые, содержащие 4—6% Si (АЛЗ, АЛ5, АЛ6), и высококремнистые, содержащие 6—12% S1 (АЛ2, АЛ4, АЛ9). Характеризуются большой плотностью, повышенной прочностью, хорошей жидкотекучестью, малой усадкой. Силумины применяются для отливки в землю, в кокиль, а также для обработки давлением.  [c.123]

Жидкотекучесть помимо облегчения заполнения формы способствует образованию более концентрированных усадочных раковин в прибылях вместо образования газовых пузырей, рассеянных по телу отливки. Это объясняется тем, что жидкотекучесть способствует более свободному перемещению газовых скоплений в жидком металле отливки.  [c.460]

Высокая температура перегрева и повышенное содержание кремния (Si 2%) улучшают жидкотекучесть жидкого чугуна и исключают отбел отливок, но при этом образуется тонкая феррито-перлитная эвтектика, которая резко снижает механические свойства отливки. В этом случае в структуре отливки появляется свободный феррит. Опыты показали, что такая структура образуется главным образом в поверхностном слое и в тонкостенных отливках, поэтому тонкая феррито-перлитная эвтектика, обладающая низкими механическими свойствами, на многих заводах страны удаляется путем механической обработки.  [c.62]

Жидкотекучесть — способность металлов и сплавов в расплавленном состоянии заполнять полость стандартной формы (пробы) и точно воспроизводить очертания отливки. Жидкотекучесть зависит от а) состава и физико-химических свойств сплава б) теплофизических свойств формы в) технологических условий литья. Наибольшая жидкотекучесть характерна для чистых металлов и эвтектических сплавов (рис. 12.1), а наименьшая — для сплавов на основе твердых растворов или гетерогенных структур (представляющих собой твердые растворы с распределенными в них частицами других фаз). Это связано с различным характером процесса затвердевания отливки, обусловленным шириной температурного интервала кристаллизации АГ р — перепада температур между температурой начала (ликвидус) и конца (солидус) кристаллизации для конкретного сплава. Для узкоинтервальных сплавов (ДГ р < 30 °С) характерно последовательное затвердевание отливки от поверхности к центру,  [c.309]

На структуру п Boii TBa серого чугуна существенное влияние оказывают его химический состав и скорость охлаждения отливок в форме. Углерод, кремний и марганец улучшают механические и литейные свойства чугуна. Сера вызывает отбел в тонких частях отливок и снижает жидкотекучесть. Фосфор придает чугуну хрупкость. Поэтому содержание серы и фосфора в сером чугуне должно быть минимальным. Увеличение скорости охлаждения достигается путем уменьшения толщины отливки и увеличения теплопроводности литейной формы. В тонких частях отливки у ее поверхности скорость кристаллизации будет выше, чем в более массивных частях и в сердцевине. Поэтому в тонких частях отливки образуется более мелкая структура с повышенным содержанием перлита и мелкими включениями графита, что обеспечивает высокие механические свойства этих зон. Там, где чугун затвердевает медленнее, образуется крупио-  [c.158]


Жидкотекучесть высокопрочного чугуна такая же, как и у серого чугуна при одном и том же химическом составе и прочих равных условиях (температуре заливки, скорости охлаждения и др.), что позволяет получать отливки с толщиной стенок 3—4 мм сложной kofi-фигурации. Линейная усадка высокопрочного чугуна составляет 1,25—1,7 %. Это затрудняет изготовление отливок без усадочных дефектов.  [c.161]

Оловянные бронзы имеют хорошую л<идкотекучесть, достатошю высокую усадку (1,4—1,6 %). Эти бронзы затвердевают в больи]ом интервале кристаллизации (150—200 С), что обусловливает образование в отливках рассеянной пористости. Безоловяниые брои.ил обладают высокой жидкотекучестью и усадкой (1 6—2,4 %), затвердевают в малом интервале кристаллизации, что приводит к образованию в отливках сосредоточенных усадочных раковин.  [c.171]

Наиболее существенные преимущества центробежногх) литья заключаются в возможности получать более плотную структуру металла отливок, особенно для сплавов, имеющих некоторый интервал кристаллизации, и в возможности получать отливки с меньшей толщиной стенок, в том числе из сплавов с пониженной жидкотекучестью. Однако попытки использовать преимущества за-  [c.160]

Из стали производят около 21 % всех отливок по массе. По химическому составу стали делятся на углеродистые и легированные. Последние в зависимости от количества легирующих элементов делятся на низколегированные (до 2,5 %), среднелегированные (от 2,5 до 10%) и высоколегированные (свыше 10%). Литейные стали 15Л, 20Л, 45Л, 10Х18Н9ТЛ, 110Г13Л обладают пониженной жидкотекучестью и большой усадкой. В связи с этим расход металла на отливку увеличивается примерно в 1,6 раза по сравнению с чугунной. Литье из цветных сплавов составляет по массе примерно 4 % в общем объеме литейного производства.  [c.48]

Сталь ВЛ7-20 применяют для изготовления приварных (к ротору) из стали ЭИ481 соиловых лопаток. Отливки получают методами точного литья. Температура заливки форм 1550—1560° С, линейная усадка 2,0—2,5%. Жидкотекучесть хорошая, минимальная толш,ина отливаемых деталей около 0,7 мм. Стабилизация структуры достигается отжигом при 800° С. Сталь сваривается вполне удовлетворительно.  [c.213]

Для поршневых колец, работающих при повышенных температурах (примерно до 250°), в условиях полусухого трения, наиболее пригодной является перлитная или сорбитная (после термообработки) структура с минимальным количеством феррита. Эта структура сообщает кольцу необходимую прочность, вязкость и хорошие антифрикционные свойства. Составы колец зависят от способа изготовления, определяющего скорость остывания отливок. При отливке индивидуальных колец в сырые формы обычный перлитный состав (№ 31) имеет повышенное содержание и до 3,0% 51 (для колец толщиной в 3—4 мм). Это обеспечивает перлитную структуру в тонких отливках и отсутствие как местных отбе-лов, так и феррито-графитной псевдоэвтектики, снижающих упругие и антифрикционные свойства. Повышенное количество фосфора, помимо необходимой жидкотекучести, способствует распределению фосфидов в виде разорванной сетки. Сера назначается до 0,07% для обеспечения хорошей заполняемости формы, хотя содержание до 0,1% 5 не оказывает вредного влияния на работу колец. Плавка чугуна для колец обычно производится дуплекс-процессом (вагранкагэлектропечь), что обеспечивает однородность состава и высокий перегрев. Оптимальная твёрдость колец, обладающих нормальной упругостью и прочностью, лежит в пределах 97 — 103.  [c.50]

Типичным для немагнитных отливок из N1—Мп аустенитных чугунов является состав № 22 (табл. 62), известный под маркой номаг. Содержание марганца в нём составляет около 5—6%. Большее содержание марганца приводит к выделению карбидов, что затрудняет механическую обработку. Содержание кремния и фосфора повышено для увеличения графитизации и жидкотекучести применительно к тонкостенным отливкам. Сравнительные показатели электромагнитности чугуна типа номаг приведены в табл. 67.  [c.56]

Лигейные свойства сплава высокие. Сплав обладает хорошей жидкотекучестью, менее склонен к образованию микрорыхлот и пористости, чем другие магниевые сплавы, вследствие чего пригоден к отливке весьма ответственных и сложны-х цд. своей коифиг рации деталей. Сплав с успехом применяется для литья в кокиль и под давлением. Окисляемость при высоких температурах меньшая, чем у других магниевых сплавов. Обрабатываемость резанием отличная. Коррозионная стойкость удовлетворительная (после оксидирования). Микроструктура — см. вклейку лист IV, /5. Применяется в закалённом и иногда в закалённом и искусственно состаренном состояниях.  [c.160]

Остаточные напряжения в отливках из ковкого чугуна малы и не превышают 0,5кПмм [9], что связано с длительным графитизирующим отжигом при высоких температурах. Так как белый чугун по сравнению с серым имеет худшие литейные свойства — более низкую жидкотекучесть, большую линейную усадку, склонность к образованию горячих и холодных трещин и газовых раковин—это заставляет предъявлять повышенные требования к технологичности конструкции отливок из ковкого чугуна.  [c.131]

Литейные свойства. Жидкотекучгсть высокохромистого чугуна при принятых температурах заливки почти не уступает жидкотекучести обычного серого чугуна. Несколько хуже жидкотекучесть чугуна 5 и 6 (см. табл. 9), причем, тем в большей степени, чем выше содержание марганца. Температура выпуска плавки составляет 1500—1520 С, температура разливки 1380—1460° С (в зависимости от конфигурации отливки).  [c.179]

Для деталей сосудов, работающих под давлением до 0,25 МПа при температуре стенки от О до 700 °С в контакте с весьма агрессивными средами, применяют отливки из ферросилида марок С15 и С17. Отливки из этих сплавоа имеют простую конфигурацию, так как сплав обладает невысокой жидкотекучестью и очень плохо обрабатывается резанием.  [c.195]

Для деталей, изготовляемых обработкой резанием, применяют двухфазную латунь Л59 и латунь со свинцом ЛС59—1. Двухфазные латуни обладают хорошими литейными свойствами они имеют высокую жидкотекучесть, образуют сосредоточенную усадочную раковину и мало склонны к образованию химической неоднородности в отливке.  [c.230]

К литейным сплавам относятся силумины, содержапще 7—12% кремния. Они характеризуются большой плотностью, повышенной прочностью, хорошей жидкотекучестью, малой усадкой. Силумины применяются для отливки в землю, в кокиль, а также для обработки давлением.  [c.171]

При исследовании процессов затвердевания отливок и образования структур литого материала, а также процессов образования в отливках усадочных раковин, рыхлоты, усадочной и газовой пористости, химической неоднородности, неслитин, и т. п., т. е. процессов, сущность которых определяется свойствами и природой конкретных сплавов, литейная форма может раосматриваться как окружающая отливку среда, обладающая той или иной способностью отводить теплоту. Главной задачей в этом исследовании должно быть изучение законов затвердевания отливок, кинетики кристаллизации конкретных сплавов и выяснение склонности их к образованию перечисленных дефектов при различной интенсивности теплового взаимодействия отливки и формы. Цель этого исследования — определение основных параметров рациональной технологии (температуры перегрева расплава в печи, температуры заливки, режимов заполнения формы жидким металлом, режимов вентиляции формы, длительности отдельных этапов охлаждения отливки, температуры формы, материала формы и отдельных ее частей, режимов питания отливки в процессе затвердевания), а также установление требований к ряду литейных свойств сплавов (жидкотекучести, объемной и линейной усадке, склонности к образованию усадочной пористости, ликвационных зон и т. п.) с точки зрения особенностей того или иного способа литья.  [c.147]


АЛ4 Литейные свойства отличные сплап имеет высокую жидкотекучесть, не склонен к образованию усадочных горячих трещин. Герметичность хорошая. Хорошо обрабатывается резанием, хорошо сваривается. Коррозионная стойкость удовлетворительная. Теплопрочность пониженная сплав чувствителен к изменению нагрузки при температуре 250—300 С Для деталей сложной конфигурации. несущих значительные нагрузки корпусов. картеров. панелей. Сплав пригоден для отливки в песчаные формы, в кокиль, методом выжимания ГОСТ 2685-53 АМТУ 300-51  [c.318]


Смотреть страницы где упоминается термин Отливки Жидкотекучесть : [c.11]    [c.183]    [c.52]    [c.219]    [c.44]    [c.46]    [c.5]   
Справочник металлиста Том3 Изд3 (1977) -- [ c.22 ]



ПОИСК



Жидкотекучесть: алюминиевых сплавов для фасонных отливок (влияние ультразвуковой дегазации 456) бронзы

Легированная сталь для отливок — Жидкотекучесть

Легированная сталь для отливок — Жидкотекучесть свойства

Сплавы алюминиевые литейные Жидкотекучесть отливок



© 2025 Mash-xxl.info Реклама на сайте