Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уплотнения применяемые материалы

Уплотняющим материалом называется замазка — вязкий тип соединительного уплотнения, применяющийся в объемном виде и укладывающийся при помощи шпателя или шприца.  [c.304]

Достоинствами уплотнения неподвижной втулкой являются простота конструкции, широкий выбор применяемых материалов. Однако протечки через радиальную щель в уплотнениях такого типа относительно велики, что приводит к необходимости предусматривать в питающих системах вспомогательные насосы с большими подачей и напором. Снижения величины протечек можно достичь лишь за счет увеличения длины щели, так как зазор между валом и втулкой не может быть менее некоторого минимально допустимого значения, определяемого величиной биения вала. Но при этом повышается вероятность касания длинной втулки вала при его перекосах и прогибах, из чего вытекает необходимость дополнительного увеличения жесткости вала.  [c.72]


В основном решен и вопрос об утечках, и в особенности наружных. Существующие типы уплотнений и применяемые материалы для них гарантируют долговечную работу элементов гидроприводов практически без утечек. Внутренние утечки также сводятся к минимуму, о чем свидетельствует высокий объемный к. п. д. современных насосов и гидродвигателей, достигающий 95 и даже 99 %  [c.99]

Применяемые материалы 967 Уплотнительные устройства 940— 978 — см. также Манжеты Прокладки Уплотнения Уплотнительные кольца Упорные резьбы — см. Резьбы упорные Упрочнение поверхностное — Влияние на прочность при переменных напряжениях 364 Упругость 16 Уравнение Терских 263  [c.1093]

В монографии впервые в мировой литературе обобщены закономерности влияния вибрации на укладку частиц сыпучих материалов и установлены особенности вибрационного уплотнения порошков карбидов и боридов металлов и других материалов, применяемых в порошковой металлургии.  [c.120]

В качестве исходных материалов используют металлические или металлокерамические порошки, образующие матрицу, и армирующие волокна в виде непрерывных или дискретных волокон, либо в виде металлических сеток. Оборудование, применяемое при изготовлении композиционных материалов, как правило, существенно не отличается от оборудования, применяемого в порошковой металлургии. В основном это разного типа вибрационные столы для уплотнения смеси, прессы, печи для спекания и др.  [c.150]

Таблица 109 Материалы, применяемые лля сальниковых уплотнений Таблица 109 Материалы, применяемые лля сальниковых уплотнений
Углеграфитовые антифрикционные материалы применяются для изготовления подшипников, поршневых колец, торцовых уплотнений, работающих при температурах от —80 до +400° С в условиях сухого трения и применяющимися в машинах и аппаратах химического машиностроения, шахтных, формовочных и печных конвейерах, в бумагоделательных, текстильных и других машинах жестких уплотнений в паровых и газовых турбинах, компрессорах, насосах.  [c.713]

Материалы, применяемые для деталей, создающих уплотнение между корпусом и затвором, разделяются на две основные группы а) материалы для мягких уплотнений и 6) материалы для твёрдых уплотнений.  [c.781]

Сальниковое устройство. В вентилях, как и в большинстве видов арматуры, уплотнение между шпинделем и крышкой создаётся сальником с мягкой набивкой. Уплотнение достигается затягиванием крышки сальника. Материалы, применяемые для набивок, — см. гл. XII, стр. 826, и ЭСМ т. 4, гл. V. Для получения непроницаемости уплотнения особенно удобны плетёные набивки квадратного сечения, которые закладываются в сальниковую камеру в виде отдельных колец, стыки которых относительно друг друга сдвинуты.  [c.787]


Прокладки применяются для уплотнения фланцевых соединений трубопроводов и арматуры. Они представляют собой кольца, изготовленные из мягких материалов или металла. Эти кольца зажимаются болтами между фланцами. Качество получаемого уплотнения зависит от материала, применяемого для изготовления прокладок, и от степени пригонки фланцев друг к другу. При плохой пригонке фланцев происходит неравномерное зажатие прокладки, вследствие чего легко образуются неплотности.  [c.288]

Серьезной проблемой является различие в тепловом расширении при высоких температурах втулки и вала, если они выполнены из неодинаковых материалов или между ними существует значительный температурный градиент. Например, коэффициент линейного расширения обычно применяемых марок графита составляет от Va до /5 коэффициента линейного расширения для стали. Это обстоятельство необходимо учитывать при конструировании графитовых уплотнений.  [c.55]

Плотность металлического уплотнения зависит от существования сплошной линии контакта между соприкасающимися рабочими поверхностями уплотнительного узла. Разрезное кольцо должно приспособляться к изменениям диаметра и отклонениям от круглой формы рабочей цилиндрической поверхности при любом положении поршня или штока. Поскольку податливость материала зависит от модуля Юнга, металлические кольца не могут подобно эластичным материалам компенсировать значительные отклонения от круглой формы, перекосы и волнистость. В табл. 1 приведены модули упругости всех материалов, обычно применяемых для разрезных колец.  [c.69]

Большинство из этих сред способны вступать в химические реакции со многими материалами, обычно применяемыми в металлических уплотнениях. Табл. 3 содержит перечень материалов, обладающих коррозионной стойкостью по отношению к перечисленным рабочим средам.  [c.71]

В табл. 4 приведены коэффициенты линейного расширения некоторых материалов, применяемых в уплотнениях.  [c.75]

Плоские бухты или спирали применяются для изготовления колец на валы и штоки различных диаметров. Некоторые такие набивки употребляются без чехлов, но для удобства обращения с ними по тыльной стороне крепится упрочняющая тесьма. Готовые формованные кольца в большинстве случаев наилучшим образом обеспечивают заменяемость набивок сальников. Изготовленные кольца имеют требуемый размер тщательно выполнена стыковка концов и осуществлено предварительное поджатие набивки, что упрощает регулировку сальника в эксплуатации. Закрытые набивки, выполняемые с чехлами из чистого или усиленного металлическими проволочками асбеста, находят широкое применение, например, для уплотнения растворителей в условиях низких и средних температур и давлений, так как открытые кольца из пластических материалов сильно размягчаются и могут вытечь из сальниковой камеры. Пластичные кольца в асбестовых чехлах позволяют обойтись одним типом набивки в сальниках высокого давления. Сухие пластичные набивки, применяемые на вращающихся валах при не очень низких скоростях, нуждаются в охлаждении посредством утечек или подводимой смазки. Пастообразные набивки в чехлах, усиленных металлической оплеткой, успешно применяются при высоких давлениях, высоких температурах пара и газов.  [c.127]

Промышленность всегда интересовала температуростойкость неметаллических прокладок. Это свойство материалов, конечно, может оцениваться по-разному. Поскольку речь идет о влиянии, которое температура оказывает на эффективность уплотнения, очень трудно установить разумные интервалы рабочих температур, общие для всех прокладочных материалов, применяемых в промышленности. Требования к неподвижным соединениям, работаю-и(,им при низких давлениях, как и условия их применения, весьма  [c.218]

Так как капрон менее эластичен, чем обычно применяемые для уплотнений материалы, то для повышения герметичности необходимо строго выдерживать размеры манжет. Поэтому при проектировании пресс-форм следует учитывать общую усадку по наружному диаметру от 0,65 до 1,84%, по внутреннему—от 1,0 до 2,6% от размеров пресс-формы [31].  [c.203]

Основные характеристики и сортамент набивочных материалов, применяемых для уплотнений минеральных масел (ГОСТ 5152—66)  [c.294]

Материалы для изготовления деталей. Качество уплотнений зависит в значительной мере от правильного выбора материала контактирующих колец. В общем случае для деталей торцового уплотнения могут быть применены материалы, применяемые в подшипниках скольжения. Распространена пара из бронзового или чугунного уплотнительных колец и стального опорного кольца (буксы) с цементованной поверхностью. Чугун более пригоден для работы с маловязкими маслами, а также с керосином и бензином при вязких маслах предпочтительнее бронзовые кольца. Для масляной рабочей среды наилучшим сочетанием является сочетание графита с высококачественным чугуном.  [c.556]


Кроме перечисленных выше свойств, рабочая жидкость гидропривода должна удовлетворять следующим требованиям должна быть стабильна в течение установленного срока хранения и работы, теплостойка, не взрывоопасна и не пожароопасна, не токсична, совместима с применяемыми в гидроприводе материалами, особенно с материалами уплотнений. Исключительно важное значение имеет обеспеченность производства рабочих жидкостей сырьем и ее стоимость.  [c.96]

Эластомерные материалы склонны к старению и ограничены по температурному диапазону применения. Поэтому контактное давление от упругости материала постепенно уменьшается, что приводит к потере герметичности Для предотвращения этого явления в конструкции уплотнений вводят пружинящие элементы (см рис. 5.3, а). Механизм действия эластичного уплотнения проще всего рассмотреть сначала на примере колец 1 прямоугольного сечения, применяемых для уплотнения неподвижных торцовых разъемов (рис. 5.8) трубопроводов высокого давления. Контактное давление р = р-, создается сжатием сечения кольца по высоте на величину zh (е — относительное сжатие). Если равновесный модуль упругости резины (он растет с е), пренебрегая некоторым выпучиванием внутренней поверхности кольца, можно определить контактное давление  [c.144]

Было установлено, что применяемые в качестве уплотнительных материалов органические эластомеры неработоспособны при температурах выше 316° С. Поэтому в настоящее время разрабатываются металлические уплотнения, предназначенные для работы при температурах до 537° С [4,8].  [c.351]

В зависимости от назначения пленкообразующие материалы делят на клеящие, применяемые для склейки различных материалов, и герметики, обеспечивающие уплотнение и герметизацию швов, стыков, емкостей и т. д.  [c.495]

Одним из исходных материалов, применяемых для приготовления исследуемой формовочной смеси, является молотый уголь, поэтому можно сделать предположение о том, что при термодеструкции смеси в воздух рабочей зоны будут выделяться оксиды углерода. Интерес представляют данные о том, как будет меняться количество выделивших оксидов углерода в зависимости от степени уплотнения формовочной смеси.  [c.149]

Отработка торцовых уплотнений для ГЦН с контролируемыми протечками. Методика отработки гидростатических и гидродинамических торцовых уплотнений достаточно полно изложена в [38, 42, гл. 3]. Здесь остановимся лищь на некоторых особенностях отработки гидродинамического торцового уплотнения с малыми протечками (не более 0,05 м ч). Главной проблемой при конструировании такого уплотнения, как уже упоминалось ранее, является обеспечение во всех режимах работы стабильной жидкостной смазывающей пленки в уплотняющем подвижном контакте, что гарантирует безызносный режим трения. Это оказалось непосредственно связано со стабильностью макрогеометрии уплотняющих поверхностей, независимо от применяемых материалов [9, 10]. Задача стабилизации макрогеометрии оказалась чрезвычайно трудной потому, что основу работоспособности торцовых уплотнений составляет контактирование оптически плоских поверхностей. При этом значение рабочего зазора лежит в пределах от долей микрона до нескольких микрон, и нарушение макрогеометрии даже на несколько микрон приводит к существенному изменению характеристики уплотнения. При достижении некоторого предела это нарущение вызывает выход уплотнения из строя. Между тем термические и силовые деформации деталей, образующие контактирующие поверхности, и деталей, соприкасающихся с ними, в условиях высоких давлений и переменных температур, а также больщих диаметров, характерных для уплотнения ГЦН АЭС, составляют сотни микрон, т. е. превышает рабочий зазор в сотни и даже в тысячи раз. Таким образом, конструкция уплотнений должна быть такой, чтобы эти гигантские по сравнению с рабочим зазором перемещения деталей не приводили к искажению рабочих поверхностей даже на несколько микрон. Выяснение указанных обстоятельств предопределило принципиальный подход к методике отработки уплотнения вала (см. рис. 3.34) для модернизированного насоса реактора РБМК. При выборе материала для рабочих колец, образующих уплотняющие поверхности, было учтено, что лучшие результаты при испытаниях и эксплуатации показывали силицированные графиты, несколько модификаций которых прошли испытания на первом этапе на спе-  [c.238]

Наиболее полно этим требованиям отвечают уплотнения торцового типа (рис. 5.92), в которых движущаяся уплотняющая поверхность контактирует с внешней поверхностью вала в плоскости, перпендикулярной к оси вала. Эти уплотнения отличаются предельной простотой уплотняющие поверхности торцового уплотнения имеют самую простую геометрическую форму — плоскость. Они обеспечивают высокую, практически абсолютную герметичность и большой срок службы, а также отличаются относительно малыми потерями мощности на трение, которые в этих уплотнениях составляют, при всех прочих равных условиях, 0,1—0,5 потерь мощности в манжетных уплотнениях. При соответствующем подборе материалов скользящей пары подобные уплотнения длительное время могут работать без смазки, а также в любых рабочих средах. Уплотнения могут применяться при окружных скоростях уплотняемого узла до 60 м сек (соответствует 15 000 об мин) и давлениях уплотняемой среды до 400 кПсм -, температурный диапазон для этого уплотнения составляет в зависимости от применяемых материалов и жидкостей от —75° G до +450° С и выше.  [c.550]

В результате деятельности микроорганизмов образуются скопления загрязнений масса микробов, клеточный сор, органические кислоты, вода, поверхностно-активные вещества. Продукты деятельности микроорганизмов поражают защитные покрытия и уплотнения, применяемые для обеспечения герметичности и в качестве противокоррозионного слоя. Биоповреж-дениям подвергаются резины, ряд полимерных материалов и металлы.  [c.13]


При устройстве водо(паро)непроницаемых и капилляропрерывающих слоев проверяют правильность укладки и толщину слоев, в том числе и противозаиливающих, качество применяемых материалов, степень уплотнения, правильность отсыпки грунтов, выше этих слоев.  [c.119]

Проверяют качество применяемых материалов грунта или каменных материалов, обработанных органическими или минеральными вяжущими, а при раздельном введении проверяют качество минеральных материалов и органического вяжущего (его температуру, норму розлива). Проверяют качество уплотнения, следят за ровностью, сопряжением отремонтироваиного места со старым покрытием. Уплотнение должно производиться пневмо- или электротра мбовками, самоходным катком и лишь в исключительных случаях ручной трамбовкой. Степень уплотнения проверяют путем выборочного испытания вырубок или кернов, взятых в отдельных отремонтированных местах.  [c.292]

Выше приводились результаты опытов Р. Фридлянд [32], по-видимому, справедливые для применявшихся материалов, составов и способа уплотнения бетона и раствора. Ее данные значительно отличаются от рекомендаций Ф. М. Иванова. Как те, так и другие нельзя, конечно, принять в качестве практических рекомендаций для применяемых в настоящее время бетонов.  [c.112]

Применяемые материалы до их укладюи в конструкцию должны быть тгцательно отсортированы для обеспечения однородности всего засыпного слоя. Мелкозернистые материалы требуют предварительного просева для удаления крупных включений. Волокнистые материалы должны быть разрыхлены. Засыпаемый материал уплотняют при помощи валика, легкой деревянной трамбовки, вибратора либо вручную, в зависимости от высоты изоляционного слоя. При изоляции вертикальных полостей верхнюю часть ограждающей стенки каждого пояса окончательно закрепляют только после тщательного уплотнения засыпанного материала до заданного объемного веса. Для уменьшения оседания засыпного слоя под собственным весом применяют разгрузочные пояса, которыми вся изолируемая полость делится на зоны. Для предохранения изоляционного слоя от уплотнения под нагрузкой ограждающей стенки и вышележащего наружного отделочного слоя устанавливают специальные опоры, фиксирующие положение стенки и отделочного слоя по отношению к засыпному материалу.  [c.189]

Из применяемых материалов можно указать углеграфит Ниг-ран-В (для температур воздуха до 300 °С), АГ-1500 и пирографит ПГИ (для температур до 350. .. 400 °С) ответные стальные детали изготавливают из 38ХМЮА, 13Х11Н2В2МФ с азотированием контактных поверхностей на глубину 0,1. .. 0,35 мм, пружины — из проволоки 40КХНМ 0 0,5 мм. Такие уплотнения допускают значительные относительные осевые перемещения и скорости скольжения до 120 м/с.  [c.534]

В книге рассмотрено современное состояние химмотологии рабочих жидкостей гидросистем и уплотнительной техники. Описаны конструкции и технология изготовления у илот не ний, применяемые материалы. Большое внимание уделено физическим основам процессов в элементах и объяснению механизма уплотнительного действия, процессов в парах трения, старения, изнашивания. Приведены характерные при-мерг . химмотологического анализа гидросистем, примеры расчета и проектирования уплотнений, а также справочные данные.  [c.198]

Уплотнения. Применяют для защиты поднгипников от попадания извне пыли, грязи и влаги и предупреждения вытекания смазочного материала из подшипников опор. В машиностроении наибольшее распространение получили следующие уплотнения монтажные (см. рис. 3.167 и 3.168), применяемые при окружных скоростях вала до 10 м/с. Они надежно работают при любом смазочном материале толевые уплотнения (см. рис. 3.166), применяемые при окружной скорости вала до 5 м/с и пластичной с.мазке. Зазоры щелевых уплотнений заполняют пластичной смазкой лабиринтовые (рис. 3.170), применяемые при любых скоростях и смазочных материалах. Уплотняющий эффект создается чередованием весьма малых радиальных и осевых зазоров комбинированные уплотнения, например ла-  [c.431]

Прессование. Основной операцией процесса изготовления композиционных материалов методом диффузионной сварки под давлением является прессование. Именно в процессе этой операции происходит соединение отдельных элементов предварительных заготовок в компактный материал (формирование изделий). В отличие от прессования как метода обработки давлением металлов и сплавов, заключающегося в выдавливании металла из замкнутой полости через отверстие в матрице и связанного с большими степенями деформации обрабатываемого материала, данный процесс по своему существу ближе к процессу прессования порошковых материалов, применяемому в порошковой металлургии. Прессование заготовок композиционных материалов в большинстве случаев осуществляется в замкнутом объеме (в пресс-формах, состоящих из матрицы и двух пуансов типа пресс-форм, применяемых для получения изделий из металлических порошков) и с незначительной пластической деформацией материала матрицы, необходимой только для заполнения пространства между волокнами упрочнителя и максимального уплотнения самой матрицы. При этом, как и в процессе горячего прессования порошков, наряду с пластической деформацией матрицы, на границе раздела 126  [c.126]

Фторопластовые уплотнения. В последнее время появилось несколько сообщений [23], в которых описаны узлы трения с использованием в качестве антифрикционного материала чистого фторопласта-4 (без наполнителей). Эксплуатация этих узлов трения показала бесспорное преимущество фторопласта-4 перед другими, ранее применявшимися антифрикционными материалами (прографиченный асбест и другие) увеличился срок службы узлов трения и улучшились их эксплуатационные качества.  [c.130]

Известные материалы, применяемые в нижнем гидродинамическом подшипнике, питаемом водой первого контура, нетермостойки, поэтому для такого подшипника необходим автономный контур охлаждения в целях поддержания требуемой температуры рабочей среды (не более 100 °С). Поскольку в этих ГЦН уже имеется в наличии контур питания уплотнения (см. рис. 4.8, 4.12) то вполне естественно в него включить и контур охлаждения гидродинамического подшипника, циркуляция воды в котором обеспечивается рабочим колесом ГЦН. Схема проста и надежна, на должна быть обеспечена высокая эффективность автономного, холодильника.  [c.118]

Во многих отраслях техники незаменимы антифрикционные графитовые материалы (ФМК, металлопластмасса, АГ-1500, и др.), применяемые для изготовления поршневых колец, уплотнений и подшипников, работающих без смазки в жидких средах. Высокая химическая стойкость, теплопроводность, работоспособность в окислительных средах при температуре до 400° С и в нейтральных и восстановительных средах при температурах до 2500° С позволили применить графитовые материалы в уплотнениях серийно выпускаемых насосов, трубокомпрессоров и для поршневых колец компрессоров, работающих без смазки цилиндров, пневматических устройств и газораспределителей. Графитовые подшипники применяются в насосах для химически активных сред, в газодувках и т. д.  [c.302]

Рабочие жидкости, а также смазки различных машин в большинстве случаев являются минеральными или синтетическими маслами, ВЫПОЛНЯЮШ.ИМИ в гидросистеме, помимо функции рабочего тела, функции смазочного и охлаждающего агента, защиты деталей от коррозии, отвода из системы продуктов износа. Для всех рабочих жидкостей характерна малая химическая активность, высокая стабильность, теплостойкость, невзрывоопасность, неток-сичность, хорошая совместимость с применяемыми в гидросистеме материалами, в том числе с материалами уплотнений. С точки зрения совместимости с материалами уплотнений, среды называют малоагрессивными (преимущественно нефтепродукты), агрессивными (вода, слабые водные растворы солей и др.), высокоагрессивными (морская вода, кислоты, окислители и т. д.).  [c.81]


Материалы трущейся пары торцового уплотнения. Они должны удовлетворять комплексу требований, обеспечивая долговечность и износостойкость в заданном режиме работы и применяемой среде. Эти материалы должны быть совместимы с рабочей средой, обладать высокой коррозионной стойкостью, достаточной прочностью, хорошими антифрикционными свойствами (стабильный низкий коэффициент трения, отсутствие склонности к заеданию и схватыванию), высокой термостойкостью и сопротивляемостью тепловому удару, стабильностью размеров в течение всего срока эксплуатации. ( ля малоагрессивных сред с хорошими смазывающими способностями могут быть применены различные материалы, и их выбор определяется в основном соображениями надежности и долговечности работы уплотнения, а также технологии, себестоимости и обеспеченности производства сырьем. Чем агрессивнее среда и выше требования к уплотнению, тем уже круг материалов, из которых можно произвести их выбор. В этом случае главным условием выбора материала является его совместимость со средой. Например, при изготовлении торцовых уплотнений на заводах-из-готовителях объемных гидроприводов целесообразно применить пару бронза — сталь, принятую для основного узла трения гидромашин, так как материалы, технология и оборудование для изготовления деталей уплотнений и деталей гидромашин будут оди-наковы В химических машинах и специальных агрегатах требуются уплотнения для различных агрессивных сред. Их изготовление производится на специализированных заводах, приспособленных обрабатывать дефицитные и трудоемкие материалы. Наиболее часто применяемые для различных сред материалы указаны в табл. 16.  [c.181]

Из пористых поликристаллических карбидкремниевых материалов (со связующими) изготовляют абразивный инструмент (применяемый для обработки твердосплавного инструмента), огнеупорные материалы, изделия электротехнического назначения (электрические нагреватели, поджигатели игнитронов и т. д.). Беспористые материалы на основе карбида кремния применяют в качестве специальных огнеупоров, высокотемпературных нагревателей ( силитовые и глобаровые стержни), торцовых уплотнений, для изготовления деталей, подвергающихся интенсивному коррозионному и абразивному воздействию.  [c.142]


Смотреть страницы где упоминается термин Уплотнения применяемые материалы : [c.7]    [c.628]    [c.725]    [c.204]    [c.56]    [c.185]    [c.536]   
Машиностроительная гидравлика Справочное пособие (1963) -- [ c.546 ]



ПОИСК



Применяемые материалы



© 2025 Mash-xxl.info Реклама на сайте