Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Позитрон свойства

Об открытии н свойствах позитрона см. 75.  [c.139]

Историю открытия элементарных частиц и изучения их свойств можно разбить на два этапа. На первом этапе, окончившемся в 1932 г., были открыты шесть элементарных частиц фотон, электрон, протон, нейтрон, позитрон и нейтрино. История открытия и свойства этих частиц будут кратко охарактеризованы в 75.  [c.542]

Очень интересна история открытия позитрона. В 1928 г. английский ученый Дирак получил релятивистское квантовомеханическое уравнение для электрона. Это уравнение позволило объяснить все основные свойства электрона, в том числе наличие у него спина и магнитного момента. Но самой замечательной особенностью уравнения Дирака оказалось то, что из него следовало существование двух областей значений энергии электрона  [c.545]


Слабый характер взаимодействия х-мезонов с веществом сближает их свойства со свойствами электронов (позитронов) и нейтрино (антинейтрино). В настоящее время считается, что все упомянутые частицы входят в один и тот же класс элементарных частиц — лептонов , которые имеют ряд общих свойств (подробнее см. 83).  [c.556]

Заметим, что основная особенность античастиц (антипротона, антинейтрона, позитрона), заключающаяся в свойстве быстрой  [c.621]

Можно себе представить мир, устроенный из античастиц, — антимир. Атомы в этом мире состояли бы из позитронов, антипротонов и антинейтронов и, так же как обычные атомы, обладали бы свойством стабильности. Зато электрон, протон и нейтрон вели бы себя в антимире подобно античастицам, они быстро аннигилировали бы при попадании в антивещество антимира.  [c.622]

Специфическое своеобразие б свойствах электрона и позитрона, (равные массы, противоположные заряды, движение дырки навстречу электрону, эквивалентность рождения частицы уничтожению античастицы) позволяет распространить метод фейнмановских диаграмм, описанный в 2, на позитроны (и вообще на античастицы).  [c.100]

Очень ценным свойством пузырьковой камеры является возможность использовать в качестве рабочего вещества жидкости с самыми разнообразными свойствами, например пропан, фреон, ксенон, водород, гелий. Это позволяет изучать те или иные явления наиболее эффективно. Так, водородная пузырьковая камера очень удобна для изучения взаимодействия частиц с протонами. Для этой же цели (хотя и с меньшими удобствами) может быть использована более простая в эксплуатации пропановая камера. Гелиевая камера используется для изучения взаимодействия частиц с ядрами гелия, которые очень удобны для анализа, так как у аНе как обычный, так и изотопический спин равны нулю ксеноновая (благодаря малой радиационной длине ксенона) —для изучения электромагнитных процессов (например, распада я°-мезона на два у Кванта с последующей конверсией их в электрон-позитронные пары).  [c.165]

Можно себе представить мир, устроенный из античастиц,— антимир. Атомы в этом мире состояли бы из позитронов, антипротонов и антинейтронов и, так же как обычные атомы, обладали бы свойством стабильности. Зато электрон, протон и ней-  [c.216]

Представление об элементарных частицах исторически возникло в процессе поисков мельчайших частичек веществ, являющихся носителями его фундаментальных свойств. Сначала такими частичками считали молекулы, затем атомы, потом, когда стало известно о сложном составе атома и атомного ядра, элементарными частицами стали называть входящие в них электроны е (с массой те 0,Ь Мэе), протоны р (тр 1836,1 Ше) и нейтроны п (/Ип —1838,6 Ше), а также частицы, испускающиеся при преобразованиях атомных ядер позитроны е т — т ),  [c.320]


Выше уже указывалось, что кристаллы с точечными дефектами в определенном количестве могут быть термодинамически равновесны. Однако в ряде случаев возникают и избыточные неравновесные точечные дефекты. Различают три основных способа, с помощью которых дефекты могут быть созданы быстрое охлаждение от высоких до сравнительно низких температур (закалка) дефектов, которые были равновесны до закалки, пластическая деформация, облучение быстрыми частицами. Возникающие в этих случаях типы точечных дефектов, как правило, те же, что и вблизи термодинамического равновесия. Однако относительные доли каждого типа дефектов могут существенно отличаться от характерных для равновесия. Поэтому в изучении дефектов решетки особую роль играют экспериментальные методы, такие, как изучение электросопротивления (зависимости его от температуры и времени), рассеяния рентгеновских лучей и нейтронов, зависимости теплосодержания от температуры и времени, механических свойств, ядерного гамма-резонанса, аннигиляции позитронов и т. д.  [c.235]

Прежде всего следует различать корпускулярное излучение, состоящее из частиц с массой, отличной от нуля, и фотонное или электромагнитное излучение, состоящее из не имеющих массы фотонов, Корпускулярные излучения могут состоять как из заряженных частиц, так и из частиц с нулевым зарядом. Некоторые виды корпускулярных излучений существуют в природе. Альфа-излучение представляет собой поток ядер гелия, испускаемых при ядерных превращениях изотопов тяжелых элементов, располол<енных в периодической системе после свинца. Бета-излучение представляет собой поток электронов или позитронов, испускаемых при бета-распаде ядер различных элементов периодической системы или нестабильных частиц. Свойства некоторых частиц приводятся в табл. 14.1.  [c.332]

В силу линейности уравнений Максвелла при заданных значениях зарядов и токов нелинейность в оптике связана со свойствами отклика среды на поле. Это действительно так, пока можно пренебрегать рождением электронно-позитронных пар, т. е. нелинейностью самого вакуума. Один из вариантов традиционного подхода в нелинейной оптике состоит в том, что любая среда описывается с помощью диэлектрической проницаемости г, которая для нелинейной среды сама зависит от электромагнитного поля. Ясно, что при этом волновое уравнение оказывается с математической точки зрения сугубо нелинейным. В книге в дальнейшем будем использовать другой подход, задавая свойства среды вектором поляризации, фигурирующим в правой части волнового уравнения. Очевидно, что волновое уравнение остается линейным относительно поля и поляризации, а все нелиней-пости выносятся за рамки этого уравненпя и определяются зависимостью вектора поляризации в данной среде от электромагнитного поля (материальными уравнениями). Такой подход, математически эквивалентный первому, физически более естественен и, как следствие, позволяет сформулировать некоторые свойства нелинейно-оптических явлений (например, синхронизм) безотносительно к конкретным свойствам среды, типу нелинейного процесса, величине поля и т. д. Кроме того, он облегчает введение приближений заданного поля в случае достаточно слабых полей.  [c.7]

Источник а-частиц, покрытый алюминиевой пластинкой и помещенный перед отверстием в стенке камеры Вильсона, испускал позитроны, которые под действием магнитного поля в 400 гаусс описывали кривую в объеме камеры. Излучение положительных электронов продолжалось и после удаления а-излучателя в течение более или менее длительного времени в зависимости от свойств облучаемого элемента. При применении бора это время превышало 0,5 часа. При уменьшении энергии а-частиц, облучающих алюминиевую пластинку, число положительных электронов также уменьшалось, тогда как период полураспада, повидимому, не изменялся. При уменьшении энергии а-частиц до 10 позитронное излучение почти полностью исчезало.  [c.55]


В конце 1932 г. в космических лучах Андерсоном и Милли-кеном был открыт позитрон — частица с массой электрона, но положительно заряженная (е+). Ее существование было предсказано Дираком из чисто теоретических представлений и обнаруженные свойства позитрона оказались точно соответствующими предсказанным.  [c.8]

Масса мюонов равна 206,8 т,., они имеют либо отрицательный, либо положительный заряд. Нейтрального мюона не существует. Подобно электрону и позитрону ц- и ц+ являются частицей и античастицей. Свойства мюонов, тип взаимодействий, в которых они участвуют, аналогичны свойствам электронов. В этом смысле их часто и рассматривают как нестабильные тяжелые электроны.  [c.240]

Электронно-позитронная томография отличается только тем, что используется изотоп с энергией гамма-излучения выше 1 МэВ, При этом, взаимодействуя с объектом, каждый квант создает эффект образования пары электрон — позитрон. Замечательным свойством этого эффекта является то, что электрон и позитрон образуются одновременно и летят точно в противоположные стороны. Возникает возможность, определяя траекторию их полета и совпадения времени каждого события, вычислять точные координаты, т. е. строить изображение,  [c.57]

За исключением явления аннигиляции, позитроны и отрицательные электроны ведут себя одинаково в своих взаимодействиях с веществом. Их свойства следующие  [c.42]

Эту частицу он назвал позитроном. В следующем году П. Блеккет и Г. Оккиалини с более совершенной экспериментальной методикой подтвердили выводы К- Андерсона. К свойствам позитрона мы вернемся ниже.  [c.74]

Заметим, что основная особенность античастиц (антипротона, антинейтрона, позитрона), заключающаяся в свойстве быстрой аннигиляции при попадании их в вещество, объясняется не какими-то специфическими свойствами античастиц по сравнению со свойствами частиц (как те, так и другие в равной степени обладают свойствами аннигилировать при встрече со своим зарядовосопряженным партнером), а несимметрией устройства нашего мира.  [c.216]

Позитрон участвует в элекчромагнитном, слабом и гравитационном взаимодействиях и относится к классу лептонов. По статистическим свойствам он является фермионом.  [c.227]

Мюоний состоит из положительного мюона и электрона. Мюон аналогичен по своим свойствам позитрону, но имеет массу, примерно в 207 раз большую массы позитрона. Он относится, так же как позитрон и электрон, к классу частиц, называемых лептонами, которые не участвуют в сильных взаимодействиях. Мюон нестаби.пен, и его время жизни равно примерно 2,2 мкс. Для мюона Z = 1, а приведенная масса практически равна приведенной массе атома водорода. Поэтому боровский радиус и ионизационный потенциал у мю-ония практически равны соответствующим величинам атома водорода.  [c.196]

Физические свойства вакуума обусловливаются виртуальным порождением и поглощением фотонов и всех других частиц. Поэтому говорят не только об электромагнитном вакууме, но и о вакууме других частиц. В частности, выше шла речь о состояниях с отрицательной энергией и П03И1 ронах. Фон электронов в состояниях с отрицательной энергией есть электронно-позитронный вакуум. Имеется также вакуум и других час-  [c.402]

В начале этого параграфа мы говорили, что в квантовую электродинамику можно наряду с электронами и позитронами включить еще положительный и отрицательный мюоны. Удивительным свойством мюона является его полное сходство с электроном во всех свойствах, кроме массы. Обе частицы электрически заряжены и имеют спин половина. Обе частицы не подвержены сильным взаимодействиям. Электромагнитное взаимодействие для обеих частиц совершенно одинаково вплоть до таких тонких деталей, как, скажем, поправка (7.95) к магнитному моменту (но, конечно, в выражение для магнетона Бора у каждой частицы входит своя масса). Забегая вперед, скажем, что и в отношении слабых взаимодействий электрон и мюон ведут себя совершенно одинаково. И то, что в слабых взаимодействиях мюон распадается на электрон (см. (7.50)), а не наоборот, получается только потому, что мюон тяжелее электрона. Почему в природе существуют две частицы, так сильно различающиеся по массе и столь сходные во всех остальных отношениях Это, пожалуй, один из самых загадочных вопросов физики элементарных частиц. Что же касается практического участия мюонов в квантовоэлектродинамических процессах, то оно в общем-то невелико из-за большой массы мюона. Если явления с виртуальными электронами разыгрываются в области HIm , то явления с виртуальными мезонами ограничиваются областью, размеры которой в двести раз меньше. Поэтому сечение процессов с участием виртуальных мюонов (комптон-эффект, рождение пар и т. д.) на 4—5 порядков меньше соответствующих электронных сечений. Например, сечение комптон-эффекта уменьшается в 200 = 4-10 раз из-за того, что в знаменателе формулы для г1 (см. (7.85)) стоит квадрат массы. Кроме того, про-  [c.341]

Несколько антинуклонов могут образовать антиядро . Из этих антиядер удалось получить антидейтрон и антигелий-3. Захватив достаточное количество позитронов, стабильное антиядро может образовать стабильный электрически нейтральный антиатом. Большие количества антиатомов могут образовывать макроскопическое антивещество, свойства которого будут такими же, как и у обычного вещества (но рассматриваемого через зеркало, см. гл. VI, 4). Вещество и антивещество не могут сосуществовать из-за аннигиляции. Поэтому, если во Вселенной существуют области, заполненные антивеществом, то они должны быть отделены от областей, заполненных веществом, большими расстояниями.  [c.371]

Дефекты после радиационного облучения. Из множества элементарных частиц и излучений, возникающих при распаде ядерного топлива (нейтроны, протоны, дейтроны, электроны, позитроны, а-частицы Р- и y-из-лучения), наибольшее влияние на свойства конструкционных материалов оказывают нейтроны. Из-за отсутствия заряда нейтроны проникают в кристаллическую решетку металла, вызывая в ней существенные изменения. Наиболее сильно влияют на свойства металлов быстрые нейтроны, нейтроны, обладающие энергией выше 0,5 эв, которые, попадая в кристаллическую решетку с энергией в несколько десятков тысяч электроно-вольт, упруго сталкиваются с ядром ионизированного атома. Атом, получив энергию, при смещении из узла решетки перемещается в междоузлие. Таким образом, в кристаллической решетке возникает вакансия и внедренный в междоузлии атом.  [c.38]


Роль электронов в металлах как фактора, определяющего их прочность и пластичность, подчеркивалась Я. И. Френкелем еще в ранних работах [1] на основе пористой электронной модели. Современные представления о реальной прочности металлов, учитывающие, с одной стороны, кооперативный характер процессов перемещения атомов при деформации, а с другой — локальный характер разрушения, не отрицают роли электронного фактора. Так, справедливо считается, что наблюдаемые различия прочностных характеристик кристаллов определяются их электронной структурой, а роль дефектов упаковки в механизме деформации и разрушения металлов и качественная связь энергии дефектов упаковки с характеристиками электронной структуры [2] общепринятые. Для дальнейшего развития этих представлений стала очевидной необходимость установления закономерностей взаимосвязи процессов деформации и разрушения с электронными свойствами самих дефектов, ответственных за прочностные свойства металлов [.3]. Со времени открытия явления взаимодействия позитронов с дефектами кристаллической решетки [4] стало понятным, что метод позитронной аннигиляции является уникальным для получения информации об электронной структуре дефектов [5]. В основе этой возможности лежит тот факт, что при наличии в кристал.те дефектов с концентрацией 10 все термализованные позитроны захватываются ими и аннигиляция с электронами в дефектах дает информацию об их электронной структуре. Если концентрация дефектов недостаточна, то в позитронную аннигиляцию будут вносить вклад как совершенные, так и дефектные области кристалла. Следовательно, использование метода электронно-позитронной аннигиляции для анализа структурного состояния в области дефектов, образующих-  [c.139]

П. участвует в эл.-магн., слабом и гравитац. взаимодействиях II относится к класбу лептонов. Постатистич. свойствам он является фермионом. П. стабилен, но в веществе существует короткое время из-за аннигиляции с электронами напр., в свинце П. аннигилирует в среднем за 5-10 с. При определённых условиях, прежде чем аннигилировать, П. и электрон могут образовать связанную систему — позитроний.  [c.671]

УСКОРИТЕЛИ ЗАРЯЖЕННЫХ ЧАСТИЦ — установки, служащие для ускорения заряж. частиц до высоких энергий. При обычном словоупотреблении ускорителями (У.) наз. установки, рассчитанные на ускорение частиц до энергий более 1 МэВ. На рекордном V. протонов—теватроне достигнута энергия 940 ГэВ (Лаборатория им. Ферми, США). Крупнейший ускоритель электронов LEP (ЦЕРН, Швейцария) ускоряет встречные пучки электронов и позитронов до энергии 45 ГэВ (после установки дополнит, ускоряющих устройств энергия может быть увеличена вдвое). У. широко применяются как в науке (генерация элементарных частиц, исследование их свойств и внутр. структуры, получение не встречающихся в природе нуклидов, изучение ядерных реакций, радиобиол., хим. исследования, работы в области физики твёрдого тела и т. д.), так и в прикладных целях (стерилизация медицинской аппаратуры, материалов и др., дефектоскопия, изготовление элементов микроэлектроники, произ-во радиофармакологич. препаратов для медицинской диагностики, лучевая терапия, радиац. технологии в технике—искусств, полимеризация лаков, модификация свойств материалов, нанр. резины, изготовление термоусаживающихся труб и др.).  [c.246]

Искусств, радиоакт. изотопы ( меченые атомы ) сыграли неоценимую роль для исследования обмена веществ в живых организмах. Мн. проблемы биологии, физиологии и медицины были решены с их помощью. Законы квантовой механики лежат в основе теории хим. связи. С помощью физ. методов удаётся осуществить хим. реакции, не идущие в обычных условиях. Меченые атомы позволяют проследить кинетику хим. реакций. Создана методика измерения скорости протекания быстрых хим. реакций с помощью пучков мюонов, полученных на ускорителях. Для решения нек-рых физ.-хим. вопросов используют структурные аналоги атома водорода—позитроний и мю-оний, свойства к-рых были установлены физиками.  [c.321]

В результате развития квантовой механики стало ясно, что ни наличие волновых свойств, проявляющихся в волновых свойствах света, ни способность исчезать или рождаться в актах поглощения и испускания не выделяют Ф. среди др, элементарных частиц. Оказалось, что всем частицам вещества, напр, электронам, присущи не только корпускулярньсе, но и волновые свойства, и была установлена возможность взаимопревращения элементарных частиц. Так, в эл.-статич, поле атомного ядра Ф. с энергией > I МэВ может превратиться в электрон и позитрон (процесс рождения пар), а при столкновении электрона и позитрона может произойти их аннигиляция в два (или три) у-кванта.  [c.354]

Законы сохранения и свойства фотонов в значит, степени определяют специфич. черты Э. в. Так, вследствие того что спин фотона равен I, появляются определ. отбора правила в процессах испускания фотонов (напр., запрещены переходы с испусканием одного фотона между состояниями системы, имеющими нулевой момент кол-ва движения). Сохранение зарядовой чётности приводит к тому, что система с положительной зарядовой чётностью С может распадаться только на чётное число фотонов, а с отрицательной— на нечётное. Напр., парапозитроний (см. Позитроний) С = + 1) распадается на два фотона, а ортопозитроний (С= - 1) — на три фотона.  [c.540]

Анализ Э. в. (и, в частности, обусловленных им процес-. сов аннигиляции электронов и позитронов высоких энергий с последующим рождением пары кварков) сьн рал огромную роль в изучении свойств кварков (в особенноси тяжёлых с- и fr-кварков). В первую очередь это касается образования связанных состояний тяжёлых кварков Ч -и Т-частиц, а в дальнейшем также изучения свойств рождающихся очарованных и прелестных D- и В-мезоиов. Соответствующие исследования существенно продвинули в целом наше понимание кварковой структуры материи. В кон. 1980-х гг. в процессах е е -аннигиляции была получена обширная информация о свойствах промежуточного 2°-бозона, позволившая проверить осн. положения теории электрослабого взаимодействия. Изучение Э. в. элементарных частиц при всё возрастающих энергиях, несомненно, и в дальнейшем будет играть существ, роль в понимании природы этих объектов.  [c.542]

Наиб, важное квантовое свойство всех Э. ч.—их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Э. ч.— это специфич. кванты материи, более точно—кванты соответствующих полей физических. Все процессы с Э. ч. протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, напр., процесс рождения я -мезона при столкновении двух протонов (р+р->р+п+тс ) или процесс аннигилящси электрона и позитрона, когда взамен исчезнувших частиц возникают, напр., два у-квакта (е -f-e - у-(-у). Но и процессы упругого рассеяния частиц, напр. е +р->е +р, также связаны с поглощением нач. частиц и рождением конечных частиц. Распад нестабильных Э. ч. на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в к-ром продукты распада рождаются в момент самого распада и до этого момента не существуют, В этом отношении распад Э, ч. подобен распаду возбуждённого атома на осн. состояние и фотон. Примерами распадов Э. ч. могут служить  [c.598]

Измерения вязкости, плотности, поверхностного натяжения и других неэлектронных параметров прямо не указывают на структуру, хотя в принципе можно определить прочность межатомной связи из этих данных с помощью одной из теорий жидкости, основанной на функции радиального распределения. Термодинамические и физические измерения высокочистых материалов могут дать информацию о явлениях пред- и послеплавления. Необходимо измерить удельную теплоемкость многих жидких металлов, особенно в широких температурных интервалах, чтобы исследовать истинную температурную зависимость спектра колебаний в этих материалах и его изменение после плавления. Нужны прямые электронные измерения, в частности эффекта Холла, термо-э.д. с. и магнитных свойств, чтобы точно установить степень, до которой можно применять модель свободных электронов к жидким металлам. Представляется широкое поле деятельности для работы над металлами с высокой точкой плавления, хотя здесь, конечно, имеются серьезные экспериментальные проблемы кажется, можно получить много прямых доказательств из некоторых необычных измерений — например, изучение аннигиляции позитронов и, следовательно, средней длины свободного пробега электронов или изучения мягкого рентгеновского спектра. Измерения ядерного магнитного резонанса и электронного спина также могут дать полезные результаты. Ясно, что требуется оче нь много экспериментальной информации, чтобы окончательно установить структуру жидких металлов и серьезно проверить с помощью эксперимента любую теоретическую обработку.  [c.168]


Адиабатический подход не принимает во внимание динамических свойств координаты, отвечающей расстоянию г между частицами-партнерами, т.е. эффектов их отдачи. Между тем в последнее время возник ряд задач, где этим эффектам принадлежит значительная, а в некоторых случаях и определяющая роль. Сюда относится, в частности, задача о взаимодействии сверхлегких атомов позитрония друг с другом или с обычными атомами [2, 3]. В этом случае (как и в задаче о взаимодействии электрона с атомом) масса по крайней мере одной из частиц-партнеров порядка массы валентной частицы и, соответственно, эффекты отдачи вносят заметный, хотя и не определяющий вклад (соизмеримый с вкладом квадрупольной составляющей ван-дер-ваальсовых сил, убывающей с ростом г быстрее основного дипольного члена) [4]. Другой пример — взаимодействие электрона с атомом, обладающим близкими по энергии уровнями разной четности  [c.320]


Смотреть страницы где упоминается термин Позитрон свойства : [c.718]    [c.105]    [c.108]    [c.281]    [c.656]    [c.862]    [c.108]    [c.55]    [c.555]    [c.597]    [c.448]    [c.95]    [c.162]   
Основы ядерной физики (1969) -- [ c.36 , c.346 ]

Введение в ядерную физику (1965) -- [ c.545 ]



ПОИСК



Позитрон

Позитроний



© 2025 Mash-xxl.info Реклама на сайте