Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Износ ударный

Износ ударных поверхностей штоков и буртов втулок ведет к браку форм необходимо следить за износом ударных поверхностей этих деталей, своевременно заменяя втулки и кольца штоков.  [c.886]

Основным недостатком мягких молотков является быстрый износ ударной части и, как следствие этого, выход из строя всего молотка. Поэтому целесообразно, где это возможно, применение специальных мягких молотков со съемными ударными частями. Такой молоток (фиг. 258) состоит из двух стальных обойм. Одна из них 1 имеет удлиненную втулку с резьбой, на которую надета обойма 2. В обойме 1 при помощи клина 3 и двух пластин 4 укреплена деревянная рукоятка 5. Пластины 4 скреплены с ручкой молотка заклепкой 6. Обе обоймы молотка закреплены гайкой 7. С обеих ударных сторон обоймы имеют выточки, в которые вкладываются бойки 8 из мягкого металла. В зависимости от назначения бойки могут иметь различную форму. Нормализованные конструкции мягких молотков приведены в приложении 6 (листы 13 и 14).  [c.215]


Шестерни Износ зубьев Поломка зубьев Отсутствие смазки Неправильное зацепление Износ Ударная нагрузка Попадание твердых предметов См. выше указания по ремонту шестерен То же  [c.343]

Интенсивный износ ударными нагрузками при повышенных температурах в агрессивных средах  [c.464]

Подшипники скольжения имеют цилиндрическую, коническую или сферическую форму опорной поверхности и работают в условиях сухого или жидкостного трения. Простейшим подшипником скольжения является отверстие, просверленное в корпусе механизма. Часто в это отверстие вставляют вкладыш (втулку) из другого материала. Подшипниковый материал должен обладать малым коэффициентом трения, иметь малый износ трущихся поверхностей и выдерживать необходимые ударные нагрузки.  [c.115]

Опоры с трением скольжения имеют следующие преимущества они могут работать при высоких скоростях и нагрузках в агрессивных средах малочувствительны к ударным и вибрационным нагрузкам их можно устанавливать в местах, недоступных для установки подшипников качения, например на шейках коленчатых палов. К основным недостаткам опор с трением скольжения относятся более высокие потери на трение при обычных условиях усложненные системы смазки тяжело нагруженных, быстроходных подшипников необходимость постоянного контроля за смазкой (исключение представляют приборные подшипники из фторопласта и капрона, а также металлокерамические подшипники), необходимость применения дефицитных материалов и высокой поверхностной твердости цапф износ большие осевые габариты.  [c.426]

Работоспособность подшипников качения ограничивается усталостным выкрашиванием рабочих поверхностей дорожек и тел качения (этот вид разрушения является основным критерием работоспособности) пластическими деформациями, в результате которых при п < 1 об/мин и больших нагрузках на дорожках качения могут появляться вмятины-лунки расклиниванием колец и тел качения (раскалывание может быть вызвано неправильным монтажей подшипников, погрешностями формы и размеров посадочных поверхностей валов и корпусов, ударными и вибрационными нагрузками) разрушением сепараторов, что характерно для подшипников, работающих при высоких числах оборотов абразивным износом трущихся поверхностей, который наблюдается у подшипников, работающих в загрязненной среде при недостаточной защите от загрязнения.  [c.437]


Назначение — рамные, ленточные, круглые пилы, ножи для холодной резки металла, обрезные матрицы и пуансоны холодной обрезки заусенцев, кернеры. Рабочие и опорные валки для холодной прокатки металла. Рабочие валки рельсобалочных, крупносортных и проволочных обжимных и сортовых станов для горячей прокатки металла, подвергающиеся интенсивному износу и работающие в условиях минимальных или умеренных ударных нагрузок. Рабочие валки, опорные валки и бандажи составных опорных валков листовых, обжимных и сортовых станов для горячей прокатки металла.  [c.424]

Фрикционная предохранительная муфта (рис. 3.185) по конструкции аналогична управляемой многодисковой муфте. Отличие заключается в отсутствии привода управления и постоянном сжатии фрикционных дисков пружинами, отрегулированными на передачу расчетного момента М . При перегрузках муфта срабатывает, происходит проскальзывание дисков и износ их поверхностей трения. Диски сближаются, уменьшая силу сжатия пружин. Поэтому силу пружин периодически регулируют. Применяют при частых кратковременных перегрузках и в особенности при перегрузках ударного действия. Размеры муфт подбирают по ГОСТ 15622 — 77.  [c.439]

Таким образом, твердая поверхность хорошо противостоит износу, а сохранившаяся вязкой сердцевина изделия хорошо воспринимает и поглощает ударные нагрузки.  [c.38]

Более сложные взаимосвязи между износом изделия и его выходными параметрами, как правило, возникают при рассмотрении изменения динамических параметров системы — нагрузок, деформаций, изменения законов перемещения ведомого звена в результате возрастания инерционных и ударных нагрузок, изменения термодинамических характеристик и др.  [c.387]

Цепи и звездочки должны быть стойкими против износа и ударных нагрузок. По этим соображениям большинство цепей и звездочек изготовляют из углеродистых или легированных сталей с последующей термообработкой (улучшение, закалка). Рекомендации по выбору материалов и термообработки можно найти в справочной литературе [20].  [c.291]

Дробилки ударного действия широко применяют для мелкого, среднего и крупного дробления пород разной крепости. Однако препятствием к расширению области применения этих дробилок служит большой расход металла в результате интенсивного изнашивания, особенно при дроблении крепких абразивных пород. Дробилки ударного действия наиболее эффективно работают при высоких скоростях соударения, но при этом износ еще больше увеличивается.  [c.26]

Различие механизмов изнашивания обусловливает неравномерный износ поверхности образца. Участки гидроабразивного изнашивания видны на образце в виде углублений, разделенных перемычками. Поверхности углублений имеют риски, направленные от центра к периферии образца (по направлению движения жидкости). Рельеф перемычек представляет собой лунки, типичные для ударно-абразивного изнашивания.  [c.34]

Ударно-усталостное изнашивание происходит при многократном соударении поверхностей, не имеющих в зоне контакта твердых частиц, способных поражать их. Износ при этом увеличивается постепенно. Для развития ударно-усталостного изнашивания необходимо большое число циклов динамического воздействия в микрообъемах контактируемых поверхностей. При ударно-усталостном изнашивании поверхность контакта достаточно гладкая, в ряде случаев блестящая, не имеет следов лунок или рисок. Всякая неровность, образовавшаяся на поверхности контакта при ударно-усталостном изнашивании, сглаживается в результате деформации при очередном соударении. В конечном итоге при ударно-усталостном изнашивании поверхность становится шероховатой, что обусловлено энергией удара и механическими свойствами материала.  [c.35]

Для выявления характера изнашивания и влияния продолжительности испытания на износ при соударении двух металлических поверхностей были проведены методические опыты большой длительности при различных режимах испытания. Оказалось, что при ударно-усталостном изнашивании приработка существенно влияет на износ, поэтому ее необходимо учитывать.  [c.61]


Влияние энергии удара на износ и закономерности изнашивания при ударе по различным видам абразива неоднозначно. При изнашивании, связанном с ударом по абразиву, исключительно важное влияние на его природу и закономерности оказывает вид абразива. Кроме того, анализ полученных результатов показывает, что разрушение горной породы и. -наблюдающееся при этом изнашивание образцов — это взаимосвязанные процессы, для которых можно найти оптимальный режим, со--ответствующий наибольшей износостойкости образцов. Этот вывод представляет собой интерес применительно к оборудованию буровых долот и указывает возможные пути повышения их эффективности и износостойкости. При ударе по абразиву форма контактирующей поверхности весьма существенно влияет на природу и интенсивность изнашивания при скольжении такого влияния не наблюдается. В связи с этим при конструировании ударного инструмента, взаимодействующего по условиям работы с абразивом, необходимо учитывать такую специфику.  [c.64]

Возможными направлениямл применения могут быть защита производственных помещений стены, полы, опоры, железобетонные и металлические фермы и другие конструкции производственного назначения. Наливной пол на железобетонной основе обладает высокими механическими свойствами (стойкость к абразивному износу, ударная прочность, эластичность, стойкость к нефтепродуктам и др.), позволяет свободно передвигаться по цеху производственному транспорту толщина наносимого слоя от 6 до 10 мм. Стойкость к нефтепродуктам обеспечивает сохранность покрытия от разрушения. Покрытие ремонтируется повторным его нанесением на поврежденные участки  [c.157]

В соответствии с различными принципами смесеобразования различаются и требования, которые предъявляют карбюраторные двигатели и дизели к применяемым в них жидким топливам. Для карбюраторного двигателя важно, чтобы топливо хорошо испарялось в воздухе, который имеет температуру окружающей среды. Поэтому в них применяют бензины. Основной проблемой, препятствующей повышению степени сжатия в таких двигателях сверх уже достигнутых значений, является детонация. Упрощая явление, можно сказать, что это — преждевременное самовоспламенение горючей смеси, нагретой в процессе сжатия. При этом горение принимает характер детонационной (ударной, несколько напоминающей волну от взрыва бомбы) волны, которая резко ухудшает работу двигателя, вызывает его быстрый износ и даже поломки. Для ее предотвращения выбирают топлива с достаточно высокой температурой воспламенения или добавляют в топливо антидетонаторы — вещества, пары которых уменьшают скорость реакции. Наиболее распространенный антидетонатор — тетраэтил свинца РЬ ( 2Hs)4 — сильнейший яд, действующий на мозг человека, поэтому при обращении с этилированным бензином нужно быть крайне осторожным. Соединения, содержащие свинец, выбрасываются  [c.180]

Материалы целей и звездочек. Цепи и звездочки дотжны быть стойкими против износа и ударных нагрузок. По этим соображениям болыпинство цепей и звездочек изготовляют из углеродистых и легированных сталей с последующей термическо обработкой (улучшение, закалка). Рекомендации по выбору материалов и термообработки цепей и звездочек можно найти в соответствующих справочниках [4, 27]. Так, например, для звездочек рекомендуется применять стали 45, 40Х и др. для пластин цепей — стали 45, 50 и др. для валиков, вкладышей и роликов — стали 15, 20, 20Х и др. Детали шарниров цепей в большинстве случаев цементируют, что повьниает их износостойкость при сохранении ударной прочности. Перспективным является изготовление звездочек из пластмасс, позволяющих уменьшить динамические нагрузки и шум передачи.  [c.247]

При действии переменных нагрузок (например, в поршневых двигателях) поверхность вкладыша может выкрашиваться вследствие З сталости, Усталостное выкрашивание свойственно подшипникам с малым износом н наблюдается сравнительно редко. В случае действия больших кратковременных перегрузок ударного характера вкладыши иодшипииков могут хрупко разрушаться. Хрупкому разрушению подвержены малопрочные антифрикционные материалы, такие, как баббиты и некоторые пластмассы.  [c.274]

Назначение — рабочие и опорные валки для холодной прокатки металлов. Рабочие валки рельсобалочных, крупносортных и проволочных обжимных и сортовых станов для горячей прокатки металлов, подвергающиеся интенсивному износу и работающие в условиях минимальных или умеренных ударных нагрузок. Опорные составные валки листовых станов для горячей мокатки металла. Клейма, пробойники, колодновысадочные штампы, деревообрабатывающий инструмент и другие детали.  [c.375]

Бронзы оловянистые обладают наилучш ими из числа цветных сплавов антифрикционными свойствами (Бр. ОФ10-1, Бр. ОЦС6-6-3 и др.) Алюминиевые (Бр. АЖ9-4) и свинцовые (Бр. СЗО) бронзы вызывают повышенный износ цапф валов (осей), поэтому применяются в паре с закаленными цапфами. Свинцовые бронзы используют при знакопеременных ударных нагрузках.  [c.520]

Из этих Чугунов изготавливают детали высокой прочности, работающие в тяжелых условиях износа, способные воспринимать ударные и знакопеременные нагрузки. Большая плотность отливок ковкого чугуна позволяет изготовлять детали водо- и газопроводных установок, корпуса вентилей, кранов, задвижек.  [c.60]

МОЛ топлива в них происходит под ударным воздействием быстро-вращающихся бил <3 на слой медленно вращающегося топлива, а также истиранием между билами и в зазоре между броневыми плитами 2 и билами 3. Чтобы эффективность размола не снижалась, необходимо по мере износа бил и увеличения зазора между ними производить замену бил. Била с помощью пальцев 4 соединены с билодержателями 5, а последние с диском 6.  [c.51]

Покрытия Ni—Сг—Si—В, легированные разны.ми элементами, сочетают высокую твердость и износостойкость с коррозпонной устойчивостью, позволяют эксплуатировать детали в условиях ударных нагрузок, в агрессивных средах с абразивным износом, успению применяются для защиты от износа уплотнительных поверхностей арматуры, пар трения и др. [1].  [c.111]


Схемы и описания установок даны в [183, 184]. Для всех методов испытаний был выбран единый цилиндрический образец. В работах Г. М. Сорокина показано, что механизм разрушения при ударно-абразивном изнашивании определяется большим количеством факторов энергией удара, физико-механическими характеристиками абразива, составом и свойствами испытуемого материала, степенью закрепленности абразивных частиц и т. д. [183—185]. Общепринятые характеристики прочности и пластичности (предел текучести, предел прочности, твердость, относительное удлинение, относительное сужение, ударная вязкость) неоднозначно влияют на износостойкость при ударно-абразивном изнашивании. Повышение прочности или пластичности сказывается благоприятно только до определенного порогового уровня. Дальнейшее увеличение этих характеристик приводцт к возрастанию износа, но причины понижения износостойкости различны. Если рост прочности сопровождается повышен115м вязкохрупкого перехода, то износ увеличивается за счет интенсификации хрупкого выкрашивания. Значительное повышение пластич-. ности приводит к падению износостойкости из-за активного пластического течения и сопутствующего наклепа. По-видимому, максимальной износостойкостью обладают сплавы, находящиеся На границе хрупкого и вязкого разрушения.  [c.109]

В. Н. Кащеев ш М. М. Тененбаум считают, что процесс изнашивания при трении в абразивной массе определяется многими взаимо-влняющими факторами [187, 191—194]. Для процесса характерна малая площадь контакта абразивной частицы с рабочей поверхностью, что вызывает значительные напряжения, величины которых зависят от формы и механических свойств частицы, а также от прижимающей силы. При этом возможны два случая если возникающие напряжения превышают предел упругости, но ниже предела текучести, то происходит усталостное разрушение если уровень напряжений выше предела текучести, то изнашивание сопровождается пластической деформацией микрообъемов и происходит последефор-мационное разрушение [187, 193]. Иногда отмечается нроцесс шаржирования [191, 192, 194], при котором за счет уменьшения шероховатости поверхности износ резко снижается. Его величина может даже принимать отрицательное значение, т. е. размеры и масса образца будут увеличиваться. Причинами шаржирования, по-видимо-му, являются неизбеншое ударное действие острых абразивных частиц, их дробление и некоторые процессы адгезионного характера. Эффект шаржирования зависит от скорости перемещения абразивной массы и соотношения твердостей абразива и образца. Вероятно, он может наблюдаться только у мягких, пластичных покрытий.  [c.112]

При прямом динамическом внедрении абразивных частиц ответственными за разрушение являются прежде всего нормальные напряжения. У вязких пластичных материалов наблюдаются значительно более высокое деформационное упрочнение, локальный рост наклепа, увеличивается неоднородность микроискажений. Частицы износа отделяются лишь после того, как материал будет достаточно охруп-чен и в поверхностном наклепанном слое возникнут микротрещины. Прямое ударное воздействие абразивных частиц на твердые материалы обусловливает возникновение высоких нормальных напряжений,, активное зарождение и развитие микротрещин, интенсивное разрушение. Причем изнашивание с отделением частиц происходит без пластической деформации сразу же после первых ударов абразива т. е. отсутствует предразрушающая фаза наклепа, характерная д.чя пластичных материалов.  [c.117]

Донбассэнерго и Институтом проблем литья АН Украины проведены работы по изучению возможности и эффективности легирования стали 110Г13Л ванадием. Легирование стали 110Г13Л ванадием значительно влияет на ее свойства за счет измельчения структуры стали, образования большого количества дисперсных карбидов, повышения концентрации фосфора по границам зерен, что и обеспечивает более высокое упрочнение и абразивную износостойкость в условиях интенсивного износа без значительных ударных нагрузок.  [c.239]

В гидравлических погружных ударных машинах удары долоту сообщаются гидроударником, приводимым в движение промывочной жидкостью с помощью автоматически действующих клапанов и золотников. При наличии абразивной жидкости в условиях высоких динамических нагрузок и большой частоты их воздействия происходит быстрое изнашивание деталей в местах соударения. Износ при этом достигает 3 мм.  [c.27]

В механизме ударно-абразивного изнашивания проявляется малоциклов я усталость микрообъемов металла, вызванная повторным приложением динамической нагрузки при упругом и упругопластическом контактах. В основе механизма ударно-абразивного изнашивания лежат прямое динамическое внедрение в металл твердой частицы и связанная с ним деформация, завершающаяся разрушением микрообъемов металла и образованием частиц износа. Твердая частица, внедряясь в поверхность изнашивания, стремится сдвинуть металл перемычек путем повторного деформирования или хрупкого выкрашивания в зависимости от его твердости. В таких условиях взаимодействия твердой частицы с по-  [c.32]

Энергия удард значительно влияет на износ и характер изнашивания при ударе образца об абразивные частицы и при соударении поверхностей без абразива. При выборе значения энергии единичного удара учитывались фактические условия, в которых работают детали машин и инструмент при ударном контактировании поверхностей. В частности, для определения" наиболее рационального значения энергии единичного удара учитывалась фактическая энергия удара рабочих элементов породоразрушающего и бурового инструмента, применяемого при бурении нефтяных и газовых скважин.  [c.38]

Следовательно, использование в опытах слоев абразива разной толщины приводит к количественным и качественным изменениям результатов испытаний. Поэтому при исследовании закономерностей ударно-абразив-ного изнашивания в условиях удара по незакрепленному абразиву использовать в опытах слой абразива большой толщины нецелесообразно, посколько при этом усложняется механизм изнашивания и повышается расход абразива. Можно считать, что при равенстве прочих факторов максимальный износ получается при ударе образца по слою абразива толщиной в одно зерно. Эта зависимость справедлива для абразива, имеющего различные размеры зерен.  [c.44]

На третьем участке зависимости, показанной на рис. И, меняется не только износ, но и качественная картина изнашивания. Уменьшение износа на этом участке связано с увеличением фактической площади контакта соударяемых поверхностей благодаря значительной пластической деформации поверхности изнашивания, что в конечном итоге вызывает увеличение диаметра образца в зоне контакта. В этом случае происходит изменение макро- и микрорельефа поверхности изнашивания глубина лунок уменьшается, торец образца принимает вид расклепанной поверхности. Необходимо отметить, что не все материалы можно испытывать на ударно-абразивное изнашивание при большой энергии удара материалы высокой твердости нельзя из-за их хрупкого разрушения, а вязкие — из-за интенсивной пластической деформации.  [c.46]


Смотреть страницы где упоминается термин Износ ударный : [c.92]    [c.18]    [c.50]    [c.395]    [c.290]    [c.97]    [c.277]    [c.388]    [c.313]    [c.404]    [c.157]    [c.93]    [c.50]    [c.366]    [c.393]   
Повреждение материалов в конструкциях (1984) -- [ c.16 , c.19 , c.489 , c.571 , c.584 ]



ПОИСК



Зависимость износа стали от скорости соударения контактируемых поверхностей при ударно-усталостт ном изнашивании

Механическое напряжение. Прочность. Деформация. Хрупкое и вязкое разрушение. Ударная вязкость Усталость. Ползучесть. Износ. Твердость

Ударное Ударный износ

Ударное Ударный износ



© 2025 Mash-xxl.info Реклама на сайте