Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Длительная материалов

Если 7е не удовлетворяет этому неравенству, соответствующее течение с предысторией постоянной деформации невозможно. Это не означает, что материал не может быть подвергнут постоянному растяжению со скоростью ув- Действительно, уравнение (6-3.13) дает значение, достигаемое напряжением после достаточно длительного воздействия постоянного растяжения (течение с предысторией постоянной деформации), т. е. стационарное значение напряжения. Таким образом, если к материалу в течение определенного времени было приложено постоянное растяжение, напряжение, возможно, достигнет значения, определяемого уравнением (6-3.13), если только выполняется неравенство (6-3.14). Если последнее не выполняется, то напряжение не достигает стационарного значения, а неограниченно растет. Этот вопрос  [c.219]


Максимальная температура газов перед турбиной ограничивается жаропрочностью металла, из которого делают ее элементы. Применение охлаждаемых лопаток из специальных материалов позволило повысить ее до 1400—1500 С в авиации (особенно на самолетах-перехватчиках, где ресурс двигателя мал) и до 1050—1090 °С в стационарных турбинах, предназначенных для длительной работы. Непрерывно разрабатываются более надежные схемы охлаждения, обеспечивающие дальнейшее повышение температуры. Поскольку она все же ниже предельно достижимой при горении, приходится сознательно идти на снижение температуры горения топлива (за счет подачи излишнего количества воздуха), Это увеличивает эксергетические потери от сгорания в ГТУ иногда до  [c.61]

Высокую твердость этих сталей используют при обработке очень твердых материалов, например камней, или в тех случаях, когда требуется сохранить длительное время очень острую режущую кромку (но при резаиии с малыми скоростями).  [c.416]

Длительность отдельных подготовительных и заключительных действий при выполнении операций обработки в единичном и мелкосерийном производстве принимается по нормативам, составленным по опытным данным, полученным на основе изучения и обобщения опыта работы новаторов, а также на основе руководящих материалов научно-исследовательских и производственных организаций. На величину подготовительно-заключительного времени влияют организация работы цеха, характер обработки детали, сложность станка и приспо-  [c.113]

Длительность времени, затрачиваемого на выполнение действий, определяется по опытным данным. По этим материалам составляются таблицы и графики, исчисляются процентные отношения к основному и оперативному времени, по которым начисляются надбавки к норме времени.  [c.117]

Величина партии деталей устанавливается в зависимости от разнообразия номенклатуры выпускаемых изделий и годового количества изделий каждого типа и размера количества необходимого периодического выпуска изделий (от срока заказа) комплектности выпускаемой продукции длительности обработки деталей и сборки машины сложности, длительности и себестоимости наладки станков наличия запаса материалов.  [c.126]

Говоря о действии луча на вещество, мы имели в виду концентрацию световой мощности лишь в пространстве (ведь интенсивность луча есть мощность, отнесенная к единице площади его сечения). Надо, однако, учитывать и концентрацию мощности во времени. Ее можно регулировать, изменяя длительность одиночных лазерных импульсов или частоту следования импульсов (если генерируется последовательность импульсов). Предположим, что интенсивность достаточна для того, чтобы металл не только плавился, но и кипел при этом излучение лазера представляет собой одиночные импульсы. В данном случае в материале поглощается значительная световая энергия за очень короткое время. За такое время поверхность расплава не успевает переместиться в глубь материала в результате еще до того, как расплавится сколько-нибудь заметная масса вещества, начнется его интенсивное испарение. Иными словами, основная часть поглощаемая веществом световой энергии лазерного импульса расходуется в подобных условиях не на плавление, а на испарение.  [c.296]


Лазерную резку материалов осуществляют как в импульсном, так и в непрерывном режиме. При резке в импульсном режиме непрерывный рез получается в результате наложения следующих друг за другом отверстий. Наиболее широкое применение получила резка тонкопленочных пассивных элементов интегральных схем, например, с целью точной подгонки значений их сопротивления или емкости. Для этого применяют импульсные лазеры на алюмо-иттриевом гранате с модуляцией дробности, лазеры на углекислом газе. Импульсный характер обработки обеспечивает минимальную глубину прогрева материала и исключает повреждение подложки, на которую нанесена пленка. Лазерные установки различных типов позволяют вести обработку при следующих режимах энергия излучения 0,1. .. 1 МДж, длительность импульса 0,01. .. 100 мкс, плотность потока излучения до 100 мВт/см, частота повторения импульсов 100. .. 5000 импульсов в 1 G. В сочетании с автоматическими управляющими системами лазерные установки для подгонки резисторов обеспечивают производительность более 5 тысяч операций за 1 ч. Импульсные лазеры на алюмо-иттриевом гранате применяют также  [c.299]

От правильного выбора материалов для составных частей изделия зависят его качество, надежность, длительность работоспособности, стоимость.  [c.199]

Постоянное развитие техники требует специальных конструкционных материалов, способных длительное время эффективно работать при высоких температурах и нагрузках.  [c.197]

Рис. 13.4. Сопоставление длительной прочности аю0 у различных материалов при изменении температуры испытания Рис. 13.4. Сопоставление <a href="/info/1690">длительной прочности</a> аю0 у различных материалов при <a href="/info/46047">изменении температуры</a> испытания
Атмосферостойкость. Испытания лакокрасочных покрытий в естественных условиях проводят, помещая образцы на специальных испытательных станциях на открытом воздухе и наблюдая за состоянием покрытий в течение 1—3 лет. Такие длительные испытания применяют для проверки вновь внедряемых лакокрасочных материалов. Ускоренные испытания проводят по методике ВИАМ в специальной аппаратуре с имитацией трехлетних атмосферных условий в течение 48 ч.  [c.400]

Длительный опыт применения в машиностроении рядов предпочтительных чисел выявил их серьезные преимущества в установлении рациональных параметров и размеров машин, так как они позволяют согласовать и увязать между собой различные виды изделий, материалов, полуфабрикатов, транспортных средств, технологического и энергетического оборудования. Так, установленный по предпочтительным числам единый сортамент металла способствует более рациональной увязке между собой характеристик металлургического и прокатного оборудования, прессов, металлорежущих станков и прочего технологического оборудования и технологической оснастки.  [c.205]

Материалы червячного колеса и червяка подбирают в соответствии с условиями работы передачи. При значительных окружных скоростях (до 30 м/с) и длительной работе без перерывов венец  [c.232]

На ограниченную долговечность рассчитывают детали, изготовленные из материалов, не обладающих отчетливо выраженным пределом выносливости или имеющих круто падающую кривую усталости (концентра,-ционно-чувствительные материалы), а также детали, которым по условиям габарита или массы нельзя придать размеры, определяемые пределом выносливости. Так же рассчитывают машины и механизмы, работающие с низкой частотой циклов, й механизмы, у которых периоды работы чередуются с длительными перерывами или работой при малых нагрузках (грузоподъемные машины периодического действия), т. е. механизмы, у которых общее число циклов за весь период службы меньше числа циклов, соответствующего пределу выносливости.  [c.282]


Приведенные выше соотношения справедливы при температурах примерно до 200 С, когда показатели прочности, упругости, линейного расширения и теплопроводности обычных конструкционных материалов изменяются сравнительно мало. При переходе в область более высоких температур на первый план выступают жаропрочность, т. е. способность длительно выдерживать напряжения  [c.369]

Длительная прочность. В случае высокой температуры и длительного воздействия нагрузки наблюдается разрушение материала при напряжении, величина которого меньше временного сопротивления материала при данной температуре. В связи с этим возникает необходимость определять длительную прочность материалов.  [c.116]

Необходимость проводить в первую очередь экспериментальные исследования различных аспектов сопротивления материалов обусловлена тем, что разупрочняющее влияние перечисленных выше факторов, имеющих место в эксплуатации, нельзя учесть расчетным путем. Чтобы правильно учесть влияние этих факторов на показатели конструктивной прочности материалов, нужно поставить соответствующие хорошо продуманные экспериментальные исследования по методикам, разработка которых часто представляет самостоятельный научный интерес. К тому же установить соответствующие аналитические критериальные зависимости можно только на основе большого количества экспериментальных данных о свойствах материала. Получают их при испытаниях изготовленных из этого материала специальных образцов в тех или иных условиях силового и теплового воздействий заданной длительности и режима изменения этих воздействий во времени.  [c.662]

Исследование прочности при высоких температурах жаропрочных и тугоплавких материалов при простом и сложном напряженном состояниях как при статических кратковременных и длительных нагрузках, так и при повторно-переменных нагрузках и теплосменах. Особое внимание при этом должно быть обраш,ено на изучение длительной прочности и выносливости материала при не-установившихся режимах силового и теплового воздействия (раздельно и совместно).  [c.663]

Изучение влияния реакторного облучения на кратковременную и длительную прочность и пластичность, а также на другие механические свойства конструкционных материалов при различных видах силового и теплового воздействий, установление уравнений состояния различных материалов и получение критериев их прочности, учитывающих эффект влияния радиационного облучения.  [c.663]

Способность сплава длительное время выдерживать воздействие агрессивных сред при высоких температурах зависит не только от диффузионно-барьерных свойств пленок продуктов реакции, но и от адгезии таких пленок к основному металлу. Нередко защитные пленки отслаиваются от поверхности металла во время циклов нагревания — охлаждения, так как коэффициенты расширения пленки и металла неодинаковы. Американское общество по испытанию материалов провело ускоренные испытания [58 ] на устойчивость различных проволок к окислению. Испытания заключались в циклическом нагревании проволоки (2 мин) и охлаждении (2 мин). Попеременное нагревание и охлаждение заметно сокращает срок службы проволоки по сравнению с постоянным нагревом. Срок службы проволоки в этих испытаниях определяется временем до разрушения или временем до увеличения ее электрического сопротивления на 10 %. В соответствии с уравнением Аррениуса, зависимость срока службы т (в часах) проволоки от температуры имеет вид  [c.205]

Ворота Панамского канала защищены внешней катодной поляризацией, причем капитальные затраты на оборудование защиты составили менее 0,5 % затрат, необходимых для замены ворот. Одно из важнейших преимуществ применения катодной защиты в данном случае заключается в том, что отпадает необходимость в длительных периодических перерывах для проведения ремонтов, обусловленных коррозионными разрушениями. Аналогично, катодно защищенный корабль может в принципе использоваться более долгое время между ремонтами в сухом доке, что приводит к ежегодной экономии в тысячи долларов. Кроме того, существенное экономическое преимущество заключается в предотвращении коррозионного растрескивания под напряжением, коррозионной усталости и питтинговой коррозии конструкционных материалов.  [c.228]

При быстром образовании физического контакта твердого тела с расплавом, например при сварке путем расплавления одного из соединяемых материалов, сначала на границе твердой и жидкой фаз будет наблюдаться пик межфазной энергии w аналогичный w (см. рис. 1.2, б), так как переход атомной системы в новое состояние происходит не мгновенно, а за некоторый конечный промежуток времени. Длительность ретардации (задержки) пика поверхности раздела, как называют этот период, может быть приближенно рассчитана как время жизни атома перед потенциальным барьером или определена опытным путем. На основании этих данных можно определить допустимую длительность контакта твердой и жидкой фаз и оптимальную температуру сварки или пайки.  [c.14]

Длительность стадий образования физического контакта А и химического взаимодействия Б здесь существенно больше, чем при сварке плавлением, и зависит от ряда факторов физикохимических и механических свойств соединяемых материалов, состояния их поверхности, состава внешней среды, характера приложения давления и других средств активации (ультразвук, трение и т. д.).  [c.14]

В сборнике представлены задачи на все основные разделы курса сопротивления материалов растялсение-сжатие, аюж ное напряженное состояние и теории прочности, сдвиг и смятие, кручение, изгиб, слож ное сопротивление, кривые стержни, устойчивость элементов конструкций, методы расчета по допускаемым нагрузкам и по предельным состояниям, динамическое и длительное действие нагрузок. Общее количество задач около 900. Некоторые задачи снабжены решениями или указаниями.  [c.38]


При диффузионной сварке соединение образуется в ре зультате взаимной диффузии атомов в поверхностных слоях контак тирующих материалов, находящихся в твердом состоянии. Температура нагрева при сварке несколько выше или ниже температурь рекристаллизации более легкоплавкового материала. Диффузионную сварку в большинстве случаев выполняют в вакууме, однако она возможна в атмосфере инертных защитных газов. Свариваемые за готовки 3 (рис. 5.45) устанавливают внутри охлаждаемой металлической камеры 2, в которой создается вакуум 133(l(H-f-10" ) Па, и нагревают с помощью вольфрамового или молибденового нагревателя или индуктора ТВЧ 4 (5 — к вакуум1юму насосу 6 — к высокочастотному генератору).Может быть исиользоваитакже и электронный луч, позволяющий нагревать заготовки с eui,e более высокими скоростями, чем при использовании ТЕ Ч. Электронный луч применяют для нагрева тугоплавких металлов и сплавов. После тогй как достигнута требуемая температура, к заготовкам прикладывают с помощью механического /, гидравлического или пневматического устройства небольшое сжимающее давление (1—20 МПа) в течение 5—20 мин. Такая длительная выдержка увеличивает площадь контакта между предварительно очищенными свариваемыми поверхностями заготовок. Время нагрева определяется родом свариваемого металла, размерами и конфигурациями заготовок.  [c.226]

В последнее время значительно возрос объем ирнмеиенпя так называемых компактных конструкционных материалов, получаемых из порон1Ков самых различных металлов н сплавов. В связи с высокой плотностью механические свойства их практически не снижаются, а отдельные эксплуатационные свойства значительно увеличиваются. Например, спеченный алюминиевый порошок (САП) в своем составе содержит до 15% оксидов алюминия, которые в виде топкой пленки покрывают зерна алюминия и образуют в спеченном материале непрерывный каркас. Такая структура придает материалу высокую теплостойкость. Этот материал может длительное время работать при температурах до 600 °С. САП по сравнению с обычным алюминием имеет более низкий температурный коэффициент. Применяют САП для изготовления компрессорных лопаток, поршней, колец для газовых турбин и т. д. Перспективно прнмененгге компактных конструкционных материалов в условиях крупносерийного и массового производствах деталей сложной конфигурации небольших размеров.  [c.421]

Для длительно работающих быстроходных передач > NN0 , следовательно, ZN = 1, что и учитьшает первый знак неравенства в формуле (2.1). Второй знак неравенства ограничивает допускаемые напряжения по условию предотвращения пластической деформации или хрупкого разрушения поверхностного слоя 2ятах = 2,6 для материалов с однородной структурой (улучшенных, объемно-закаленных) и Zяmax = 1Ф для поверхностно-упрочненных материалов (закалка ТВЧ, цементация, азотирование).  [c.13]

Нитроцементация — насыщение углеродом в газовой среде. При этом по сравнению с цементацией сокращаются длительность и стоимость процесса, упрочняется тонкий поверхностный слой — 0,3.. . 0,8 мм до HR 60.. . 63, коробление уменьшается, что позволяет избавиться от последующего шлифования. Нитроцементация удобна в массовом производстве и получила широкое применение в редукторах общего назначения, в автомобилестроении и других отраслях — материалы 25ХГМ, 25ХГТ и др.  [c.144]

Рассмотрены процессы повреждения и разрушения материалов и элементов конструкций и формулировки критериев разрушения на основе подхода, включаюшего механику деформируемого твердого тела, механику разрушения и физику прочности и пластичности. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях. Основу книги составили результаты, полученные авторами.  [c.2]

В низкоуглеродистых сталях и других деформационно стареющих материалах наблюдается четкий предел выносливости, т. е. ниже некоторого значения приложенного напряжения усталостная долговечность образцов неограниченно велика. Важность деформационного старения подтверждается так называемым эффектом тренировки образец в течение длительного времени подвергают циклическому нагружению при напряжениях ниже предела выносливости, после чего его усталостная долговечность существенно повышается благодаря увеличению напряжения течения в результате деформационного старения. Ранее считалось, что предел выносливости является характери-ристикой, отражающей сопротивление материала зарождению разрушения (т. е. зарождению усталостной трещины). В настоящее время взгляд на предел выносливости несколько трансформировался. Показано, что усталостная трещина может зарождаться и прорастать через поверхностные слои образца при напряжениях меньше предела выносливости, но не развивается в глубь образца и не приводит к разрушению [263, 423]. Таким образом, наличие предела выносливости не является следствием невозможности зарождения трещины, а скорее неспособности ее распространения в материале при данном уровне напряжений [152]. Данная закономерность позволяет связать предел выносливости с пороговым значением коэффициента интенсивности напряжений AKth, характеризующим отсутствие развития трещины при АК < А/Сгл- Указанный подход был нами использован при прогнозировании влияния асимметрии нагружения на предел выносливости. Подробное изложение полученных по данному вопросу результатов будет приведено в подразделе 4.1.4.  [c.128]

Получение отверстий лазером возможно в любых материалах. Как правило, для этой цели используют импульсный метод. Производительность достигается при получении отверстий за один импульс с больиюй энергией (до 30 Дж). При этом основная масса материала удаляется из отверстия в расплавленном состоянии под давлением пара, образовавшегося в результате испарения относительно небольшой части вещества. Однако точность обработки одноимлульсным методом невысокая (10. .. 20 размера диаметра), Максимальная точность (1. .. 5 %) и управляемость процессом достигается при воздействии на материал серии импульсов (многоимпульсный метод) с относительно небольшой энергией (обычно 0,1. .. 0,3 Дж) и малой длительностью (0,1 мс н менее). Возможно получение сквозных и глухих отверстий с различными формами поперечного (круглые, треугольные и т. д.) н продольного (цилиндрические, конические и другие) сечений. Освоено получение отверстий диаметром 0,003. .. 1 мм при отношении глубины к диаметру 0,5 10. Шероховатость поверхности стенок отверстий в зависимости от режима обработки и свойств материала достигает/ а — 0,40. .. 0,10 мкм, а глубина структурно измененного, или дефектного, слоя составляет 1. .. 100 мкм. Производительность лазерных установок при получении отверстий обычно 60. .. 240 отверстии в 1 мин. Наиболее эффективно применение лазера для труднообрабатываемых другими методами материалов (алмаз, рубин, керамика и т. д.), получение отверстий диаметром мепее 100 мкм в металлах, или под углом к поверхности. Получение отверстий лазерным лучом нашло особенно широкое применение в производстве рубиновых часовых камней и алмазных волок. Например, успешно получают алмазные волки на установке Квант-9 с лазером на стекле с примесью неодима. Производительность труда на этой операции значительно увеличилась по сравнению с ранее применявшимися методами.  [c.300]


Воздушные вяжущие материалы после скекивавия с водой затверце-ваот и длительно сохраняет свое прочность на воздухе. К применяет лишь для возведения наземных сооружений,нс подаергасщихся действие воды.  [c.77]

Электроизоляционные свойства этих материалов не изменяются от длительного пребывания в воде и во влажной среде. Физико-ме-хаиические и электроизоляционные свойства их существенно сии-  [c.348]

Прочность сцепления (связывающая способность клея). Клеевые соединения хорошо выдерживают скалывание (сдвиг), хуже — отрыв и отдирание. Испытание сводится к определению предела прочности при статическом сдвиге (табл. 25.1). Кроме того, устанавливается прочность при отрыве (равномерном и неравномерном), а также прочность при длительно действующих постоянных и переменных вибрационных нагрузках. При соединении резиновых материалов определяют сопротивление отслаиванию и расслаиванию. Прочность клеевых соединений может превышать прочность склеиваемых материалов.  [c.406]

Коррозуюнпая стойкость. Подшипниковые материалы должны быть устойчивы против действия кислот, появ.тяющпхся в масле после длительной работы ирп повышенной температуре. Наиболее склонны к коррозии РЬ, 2п, Сб.  [c.374]

Изучение влияния агрессивных сред (металлических расплавов, продуктов сгорания, морской воды и др.) на механические свойства конструкционных материалов при длительных статических и поэторно-переменных нагрузках в условиях нормальных и высоких температур с целью выявить эффект разупрочнения материалов, обусловленный влиянием среды, а также выбрать оптимальные защитные покрытия исследуемого материала.  [c.663]

Облицовывая стальные поверхности толстыми листами из пластмасс или резины, можно в основном достичь защиты от кислот, щелочей и других агрессивных жидкостей и газов. Примерами таких материалов могут служить резина, неопрен, 1,1-полидихлорэтилен (саран). Для создания достаточно хорошего диффузионного барьера и защиты металла основы от длительного воздействия агрессивной среды толщина покрытия должна составлять 3 мм и более. Высокая стоимость таких покрытий обычно ограничивает их применение сильно агрессивными средами, характерными для химической промышленности.  [c.259]

Очень больщое влияние на проявление свойств пластичности и хрупкости оказывает время нагружения и температурное воздействие. При быстром нагружении более резко проявляется свойство хрупкости, а при длительном воздействии нагрузок — свойство пластичности. Например, хрупкое стекло способно при длительном воздействии нагрузки при нормальной температуре получать остаточные деформации. Пластичные же материалы, такие, как малоуглеродистая сталь, под воздействием резкой ударной нагрузки проявляют хрупкие свойства.  [c.67]

Старением материалов называются процессы изменения их физико-механических свойств во времени в условиж длительного хранения или эксплуатации. Старение можно рассматривать как физическое явление и как операцию термической обработки. Обычно старение обусловлено недостаточно стабильным (неравновесным) состоянием материала и постепенным его переходом в стабильное (равновесное) состояние.  [c.124]


Смотреть страницы где упоминается термин Длительная материалов : [c.295]    [c.595]    [c.636]    [c.85]    [c.359]    [c.297]    [c.77]    [c.352]    [c.358]    [c.17]    [c.84]   
Теплофикационные паровые турбины и турбоустановки (2002) -- [ c.62 , c.480 ]



ПОИСК



Влияние длительной выдержки в воде на статические свойства композиционных материалов

Влияние длительности и условий эксплуатации на геометрические, химические и механические характеристики материала направляющих лопаток 1 -й ступени ТВД ГПА типа ГТН

Деформирование длительное полимерных материалов

Диаграмма длительной прочности материала

Длительная прочность материала при независимо изменяющихся во времени температурах и напряжениях

Длительная прочность материалов

Длительная прочность материалов при сложном напряженном состоянии

Длительная прочность при ступенчатом изменении напряжеМера повреждений. Закон суммирования повреждеДлительная прочность материала при программном изменении напряжений

Длительное разрушение керамических материалов и низкомолекулярных стекол

Длительное разрушение полимерных материалов

Длительность выдержки материала дисков компрессоров в цикле нагружения

Испытания антифрикционных материалов на прочность длительную

Критерии кратковременной и длительной прочности композитных материалов

Критерий длительной и малоцикловой прочности обобщенный для пластичных и хрупких материалов

Критерий длительной и малоцикловой статической прочности для хрупких (малопластичных) материало

Критерий длительной и статической прочности для пластичных материалов

Машины для длительных испытаний материалов при повышенных температурах (В. С. Голубков, Ф. М. Никитин, Смушкович)

Методы экспериментального исследования ползучести и длительной прочности полимерных материалов в условиях плоского напряженного состояния

Моделирование на ЭВМ процессов ползучести и прогнозирование длительной прочности композиционных материалов

Некоторые особенности применения энтропийного критерия длительной прочности вязкоупругих материалов

Обобщение критериев кратковременной прочности при сложном напряженном состоянии композиционных материалов на длительную прочность

Описание длительного разрушения полимерных материалов в условиях двухосного циклического растяжеДлительное разрушение изделий из хрупких керамических материалов

Особенности длительной прочности анизотропных материалов

Ползучесть и длительная прочность материалов при переменных напряжениях

Ползучесть и длительная прочность материалов при программном изменении температуры

Прочность длительная материалов при растяжении

Прочность длительная материалов при сжатии

Прочность длительная пластичных материалов

Разрушение материала вследствие ползучести. Длительная прочность

Расчетные характеристики сопротивления статическому, циклическому и длительному статическому деформированию конструкционных материалов

Расчетные характеристики сопротивления циклическому и длительному статическому деформированию конструкционных материалов

Установившаяся и чеустансвшаяся ползучесть. Длительная прочность материала

Установка для внутриреакторного исследования конструкционных материалов на ползучесть и длительную

Установка для внутриреакторного исследования конструкционных материалов на ползучесть и длительную прочность «Нейтрон

Установка для исследования ползучести и длительной прочности тугоплавких материалов

Характеристики длительной прочности, пластичности н ползучести конструкционных материалов



© 2025 Mash-xxl.info Реклама на сайте