Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформирование длительное полимерных материалов

Представляет интерес рассмотреть релаксационные свойства исследованных кристаллических полимеров при однородном напряженном и деформированном состояниях в области температур, где степень кристалличности меняется незначительно, и наметить пути их прогнозирования. Проанализированные выше экспериментальные данные показывают, что с повышением температуры эффект ползучести возрастает, это дает возможность использовать опыты при повышенных температурах, проведенных на ограниченных отрезках времени, для прогнозирования реологических свойств на длительные времена. В последнее время А. А. Ильюшину удалось теоретически обосновать ТВА [78]. Принцип ТВА дает возможность учесть влияние температуры на механические свойства полимерного материала путем введения модифицированного времени f [75]  [c.79]


Статические испытания материалов разделяются на кратковременные и длительные. Если термин длительные статические испытания не требует особых пояснений, то термин кратковременные статические испытания до сих пор нуждается в уточнении и обосновании. Некоторые авторы считают прочность кратковременной при времени нагружения менее 1 мин [67]. Иногда принимают [108, с. 231 ], что время нахождения образца под предельной нагрузкой равно 10 ч. На рис. 1.3.1 показано одно из представлений о режимах нагружения при растяжении. Большой интервал времени (1 — 5 мин) для достижения относительной деформации порядка 1% при кратковременных статических испытаниях обусловлен необоснованностью современных стандартов. Однако именно от скорости и режима нагружения (ступенчатое, непрерывное) зависит влияние ползучести полимерного связующего на характеристики материала. С этой целью при описании каждого вида испытаний оценивается влияние скорости деформирования е и устанавливаются границы е, позволяющие исключить влияние скорости и получить сопоставимые результаты.  [c.37]

В этой главе рассмотрена только линейно-упругая модель материала. Такая модель является первым приближением и может быть приемлемой или неприемлемой для данного композиционного материала. Например, как при быстром, так и при длительном нагружении материалов с полимерным связующим необходимо учитывать их упруговязкие свойства. Но для того, чтобы описать до разрушения деформирование композиционных материалов с пластичной металлической матрицей, необходимо учитывать пластические свойства. К сожалению, из-за сложности описания этих эффектов они зшитываются только в отдельных и немногочисленных теориях пластин. В последнее время для анализа сложных конструкций используют метод конечных элементов. Поскольку такой подход описан в гл. 7 т. 8, здесь он не обсуждается.  [c.157]

Длительная прочность полимерных материалов снижается в условиях циклического нагружения по сравнению с выдержкой при постоянном напряжении, если последнее равно по величине максимальному за период цикла переменному напряжению. Данное явление может быть связано с различными причинами. Прежде всего полимеры обнаруживают при циклическом нагружении тенденцию к саморазогреву, причем большую роль здесь играют частота нагружения и условия теплоотвода. Тепло генерируется за счет необратимой работы как вязкоупругого, так и вязкопластического деформирования.Повышениетемпературыматериалав процессе деформирования снижает его сопротивление длительному разрушению, как это вытекает, например, из представлений термофлук-туационной теории. Вместе с тем, при достаточно сильном само-разогреве (в условиях затрудненного теплоотвода) материал может перейти в некоторый момент из стеклообразного в вязкотекучее состояние, причем сопротивление деформированию практически утрачивается даже при отсутствии макроскопического разрушения.  [c.36]



Смотреть страницы где упоминается термин Деформирование длительное полимерных материалов : [c.35]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.191 ]



ПОИСК



Длительная материалов

Материалы - Деформирование

Полимерные материалы



© 2025 Mash-xxl.info Реклама на сайте