Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соединения угловые - Конструктивные элемент

Соединение элементов арматуры (фланцы, штуцера) со стенкой сосуда обычно делают стыковым, допуская соединение угловыми швами или рельефной сваркой только для материалов, мало чувствительных к концентрации напряжений. Стыковые круговые швы выполняют односторонней сваркой па подкладке с канавкой. Вид сборочно-сварочной оснастки и конструктивное оформление стыка определяются необходимостью плотного прижатия кромок к подкладке, предотвращения их перемещений в процессе сварки и уст-  [c.269]


Условное обозначение включает (см. рис. 1, а) 1 — обозначение стандарта на типы и конструктивные элементы швов 2 — буквенно-цифровое обозначение шва 3 — условное обо значение сварки 4 — знак и Р 13-мер катета для швов соединений угловых, тавровых и внахлестку  [c.124]

Для удобства оценки швов устанавливают понятие однотипных сварных соединений. Однотипными считаются производственные сварные соединения, имеющие одинаковые конструктивно-технологические признаки одинаковую конструкцию, аналогичную форму раздела кромок, выполненные по единому технологическому процессу (одним способом сварки, в одних и тех же положениях, сварочными материалами одной марки и одного диаметра, при одних и тех же режимах сварки, подогрева и термообработки и т. п.) на элементах из стали одной марки, при соотношении максимальных и минимальных толщин и наружных диаметров не более 1,65. Максимальные и минимальные размеры толщин и диаметров принимаются по номинальным значениям размеров свариваемых элементов. При выполнении сварных швов на плоских элементах или на цилиндрических с диаметром более 750 мм учитывается только соотношение толщин. Однотипность угловых и тавровых сварных соединений оценивается по соотношению толщин и диаметров только привариваемых элементов, для которых максимальное соотношение не должно превышать 1,65. Соотношение максимальной и минимальной толщины основных элементов не должно превышать 2,0 а соотношение диаметров может не учитываться.  [c.212]

Те же конструктивные элементы и допуски для швов угловых соединений приведены в табл. 31, для тавровых соединений — в табл. 32, а для соединений внахлестку — в табл. 33.  [c.303]

Конструктивные элементы швов угловых соединений (по ГОСТу 5264—58)  [c.310]

Соединения с конструктивными элементами. В ряде конструкций к основным силовым элементам приваривают различные конструктивные и связующие элементы (косынки, ребра, планки, накладки и др.), образующие обычно тавровые и угловые соединения. В таких конструкциях через сварные швы, как правило, не передается нагрузка на основной элемент. Однако при нагружении основного элемента в зоне присоединения дополнительного элемента создается значительная концентрация напряжений из-за резкого изменения сечения.  [c.121]

Сварка угловых соединений конструктивные элементы подготовки кромок, размеры выполненных швов, режимы сварки  [c.51]

II. Буквенно-цифровое обозначение шва по стандарту на типы и конструктивные элементы швов, содержащее буквенное обозначение вида сварного соединения и цифровое обозначение типа шва. Например, для ручной электродуговой сварки по ГОСТ 5264—69 стыковые соединения имеют обозначения С1.. . С25 угловые — У1. . . У10 тавровые — Т1.. . Т11 нахлесточные — Н1. . . НЗ.  [c.399]


IV. Знак ь . и размер катета согласно стандарту на типы и конструктивные элементы сварных швов. Знак представляет собой равнобедренный треугольник, который применяют при обозначении катета шва в некоторых угловых, тавровых и нахлесточных соединениях, выполняют сплошными тонкими линиями. Высота знака не должна превышать высоты букв и цифр, применяемых в условном обозначении сварного шва. (Величина катета — расчетная. В учебных целях в курсе черчения величину катета рекомендуется принимать равной половине толщины свариваемых деталей. При сварке деталей различной толщины величину катета шва рекомендуется принимать по меньшей толщине свариваемых деталей).  [c.399]

При ручной электродуговой сварке основными видами сварных соединений являются стыковые, угловые, тавровые и соединения внахлестку. Конструктивные элементы подготовки кромок под сварку для этих соединений, а также допуски на их размеры, согласно ГОСТ 5264-58, приведы в табл. 1, 2, 3 и 4.  [c.245]

ГОСТами в машиностроении нормализованы правила оформления машиностроительных чертежей ряды чисел, на базе которых устанавливаются линейные размеры, мощности, угловые скорости, грузоподъемности и другие величины, выражаемые числами машиностроительные материалы, их химический состав, основные механические свойства и термообработка шероховатость (чистота) поверхности деталей допуски и посадки форма и размеры наиболее распространенных деталей и узлов, как, например, крепежных деталей, подшипников качения, ремней, цепей, некоторых типов муфт и т. д. конструктивные элементы многих деталей машин, как, например, конусности для конических соединений общего назначения, модули зацепления зубьев зубчатых и червячных колес, диаметры и ширина шкивов и т. д. ряды основных параметров и качественные показатели некоторых машин.  [c.30]

Конструктивные элементы основных типов швов сварных соединений из углеродистых или низколегированных сталей, свариваемых автоматической или полуавтоматической сваркой под слоем флюса, приведены в табл. 284. Указанные в ней размеры на ширину швов являются рекомендуемыми. Величина катета к углового шва и диаметр точки точечного шва выбираются по наименьшей толщине свариваемых деталей. Швы тавровых и угловых соединений без скоса кромок можно выполнить как в положении в лодочку , так и в положении, указанном для ш в А-Т1, П-Т1, А-Т4, П-Т4, Ар-Т1, Пр-Т1, П-Т2, П-ТЗ, П-Т5, П-Т6 и П-Т7. Данные для швов Ар-Т8, Пр-Т8, А-Т10, П-ТЮ, Ар-ТИ и Пр-ТП относятся к случаю выполнения швов тавровых соединений со скосом кромок в лодочку .  [c.511]

Швы сварных соединений. Автоматическая и полуавтоматическая сварка под флюсом. Основные типы и конструктив>1ые элементы. Стандарт распространяется на сварные швы, выполняемые автоматической и полуавтоматической сваркой под слоем флюса па конструкциях из углеродистых и низколегированных сталей. Стандартом устанавливаются условные обозначения способов сварки, основные типы швов в стыковых, тавровых, угловых соединениях и в соединениях внахлестку в зависимости от формы подготовки кромок и характера выполнения шва. Указывается вид в поперечном сечении подготовленных кромок и выполненных швов в зависимости от толщины свариваемого металла, графическое и буквенно-цифровое обозначение типов швов. Приведены размеры конструктивных элементов швов с допускаемыми отклонениями от них и обозначения швов на чертежах.  [c.484]

Дополнительное обозначение содержит 1) букву, определяющую вид сварного соединения С — стыковое, У — угловое, Т — тавровое, Н — внахлестку 2) цифру, определяющую тип сварного соединения по соответствующему стандарту или нормативно-техничес-кому документу на конструктивные элементы, и номера этого документа, например СП ГОСТ 8713—58.  [c.43]

ГОСТ 11534—75 ( Ручная дуговая сварка. Соединения сварные под острыми и тупыми углами ) устанавливает основные типы, конструктивные элементы и размеры сварных соединений конструкций из углеродистых и низколегированных сталей. Предусмотрено 8 типов угловых соединений (У1—У8) и 8 типов тавровых соединений (Т1—Т8).  [c.99]


Основные типы и конструктивные элементы швов сварных соединений из винипласта и полиэтилена установлены ГОСТ 16310-70. Сварные соединения могут быть стыковые, угловые, тавровые и внахлестку.  [c.594]

Дефекты формы шва. Форма и размеры сварных швов обьино задаются техническими условиями, указываются на чертежах и регламентируются стандартами. Конструктивными элементами стыковых швов (рис. 16.1) являются их ширина е, высота выпуклости д и подварки угловых швов тавровых и нахлесточных соединений без скоса кромок (рис. 16.2) -катет К и толщина а. Размеры швов зависят от толщины 5 свариваемого металла и условий эксплуатации конструкций.  [c.237]

Размеры конструктивных элементов подготовки кромок свариваемых деталей и размеры швов угловых соединений  [c.107]

Конструктивные элементы подготовки кромок угловых соединений приведены в табл. 62.  [c.235]

Металлические детали поддонов изготовляют из стали с временным сопротивлением не менее 370 МПа. Они не должны иметь трещин и заусенцев. Угловые стойки изнутри и снаружи приваривают дуговой сваркой к раме основания и насадкам. Конструктивные элементы сварных соединений должны соответствовать, ГОСТ 5264—80, ГОСТ 8713—79 и ГОСТ 14771—76 . Предел прочности при срезе сварных соединений должен быть не менее 295 МПа. Для сварки рекомендуется применять электроды типа Э42 (ГОСТ 9467—75) и стальную сварочную проволоку (ГОСТ 2246—70 ).  [c.25]

При расположении свариваемых деталей под углом основные типы, конструктивные элементы и размеры швов сварных соединений установлены ГОСТ 11534—75, которым предусмотрены формы подготовки кромок и размеры выполнения швов угловых и тавровых соединений.  [c.193]

При сварке угловых соединений (тавровых, нахлесточных) часть погонной энергии, вводимая в свариваемый элемент, определяется в зависимости от соотношения толщин. Так, в случае приварки угловым швом к пластине толщиной o конструктивного элемента толщиной бк погонная энергия, вводимая в пластину 9п. п и в конструктивный элемент (ребро, стенку, накладку) к, может быть вычислена по формулам  [c.35]

В [10.6] кроме указанных выше (см. рис. 10.29...10.31) приведены конструктивные элементы для следующих наибольших толщин материалов, мм при стыковых соединениях —до 175 угловых —до 100 тавровых—до 120.  [c.277]

Сопоставление сопротивления усталости стыковых соединений, нахлесточных соединений с прикреплением патрубков и многослойного металла с перфорационными отверстиями. Основным видом несущего соединения многослойных конструкций является стыковой монолитный шов, выполненный автоматической или ручной сваркой. Исходя из этого, при расчетной проверке многослойных конструкций на выносливость в качестве основного расчетного сопротивления принимаются характеристики сопротивления усталости стыкового соединения, устанавливаемые нормами расчета на прочность на основании результатов соответствующих экспериментов. Таким соединениям, как вварка различного рода патрубков и устройство отводов в многослойной стенке, а также другим конструктивным особенностям (устройство перфорационных отверстий) отводится второстепенная роль. Однако эти элементы в конструкциях из монолитного металла создают повышенную в сравнении со стыковыми соединениями концентрацию напряжений, которая, в большинстве случаев, является определяющим фактором, обусловливающим инициирование и развитие усталостных разрушений. Эти виды соединений могут определять также несущую способность многослойных сварных конструкций, подвергающихся в эксплуатационных условиях воздействию циклических нагрузок. Все это потребовало выполнения специальных исследований, связанных с сопоставлением сопротивления усталости рассмотренных видов соединений. Испытаниям подвергались три серии образцов первая — эталонный многослойный образец со стыковым соединением вторая — образец, воспроизводящий устройство перфорационных отверстий в многослойной стенке третья — образец, воспроизводящий вварку угловыми швами мо-  [c.260]

Угловые и тавровые сварные соединения цилиндрических и сферических пустотелых изделий контролируют по одной из схем (см. рис. 5.53 и 5.54) в зависимости от вида сварного соединения и конструктивных особенностей свариваемых элементов.  [c.541]

По конструктивному типу сварные соединения включают стыки труб между собой, стыки секторных колен (отводов), угловые соединения штуцеров с трубами и фланцев с трубными элементами (табл. 3.46).  [c.276]

Придание угловым швам вогнутого профиля и плавного перехода к основному металлу и наложение стыковых швов без усиления осуществляют подбором режимов сварки, соответствующим пространственным расположениям свариваемых элементов конструкции или механизированной зачисткой абразивным инструментом. При сварке швов стыковых соединений элементов, различающихся между собой толщиной свариваемых кромок, тип сварного соединения и конструктивные размеры разделки и шва выбирают по элементу большей толщины.  [c.147]

Виды сварных соединений. В зависимое и от взаимного расположения свариваемых элементов различают следующие виды сварных соединений стыковые, нахлесточные, тавровые и угловые. Основные виды, конструктивные элементы, размеры и условные обозначения соедипепий, выполненных ручной дуговой сваркой, даны в табл. 3.1 (ГОСТ 5264—80).  [c.47]

Техника и технология механизированной сварки плавящимся электродом имеет много общего при использовании обычной стальной, имеющей сплошное сечение, порошковой газозащитной и порошковой са-мозащитной электродной проволоки. Различия в основном касаются значений параметров режима, рекомендуемых для сварки различных классов сталей той или иной толщины, величины вылета электродной проволоки, длины дугового промежутка. Основные типы и конструктивные элементы выполняемых дуговой сваркой в защитном газе швов сварных соединений регламентированы ГОСТ 14771-76, которым предусмотрены четыре типа соединений стыковые, угловые, тавровые и нахлесточные.  [c.169]


ГОСТ 8713-79 "Сварка под флюсом. Соединения сварные" распространяется на соединения из сталей, а также сплавов на железоникелевой и никелевой основах, выполняемых сваркой под флюсом, и устанавливает основные типы, конструктивные элементы и размеры сварных соединений. Стандарт распространяется на автоматическую и механизированную сварку под флюсом на весу, на флюсовой, флюсомедной и остающейся подкладках, на медном ползуне и на подварочном шве стыковых, нахлесточ-ных, угловых и тавровых соединений толщиной от 1,5 до 160 мм.  [c.18]

Швы сварных соединений. Ручная электродуговая сварка. Основные типы и конструктивные элементы (под острым и тупым углами). Стандарт распространяется на швы сварных соединений конструкций из углеродистых и низколегированных сталей, свариваемые ручной электродуговой сваркой металлическим электродом при толщине свариваемого метал.та до 60 Л1Л1 включительно, с расположением свариваемых деталей под углами, большими или меньшими чем 90°, и применяемые на предприятиях судостроительной и судоремонтной промышленности. Приводятся общие полон(ения, основные типы швов сварных соединений с изображением поперечного сечепия, графического и буквенно-цифрового обозначения швов угловых и тавровых соединений.  [c.484]

ГОСТ 16037—80 ( Соединения сварные стальных трубопроводов ) устанавливает основные типы, конструктивные элементы и размеры сварных соединений труб с трубами и арматурой (фланцы, штуцеры, ниппели, муфты, кольца, приварыши). Предусмотрено 16 типов стыковых соединений (С8, С19, С52 и т. д.) 10 типов угловых соединений (У5, У18 и т. д.) и 3 типа нахлесточных соединений Н1, НЗ, Н4.  [c.99]

При расположении свариваемых деталей под острыми и тупыми углами основные типы и конструктивные элементы швов регламентированы ГОСТ 11534—65 (ручная электродуговая сварка) и ГОСТ 11533—65 (автоматическая и полуавтоматическая сварка под флюсом). Этими стандартами предусмотрены формы подготовки кромок и размеры выполняемых швов угловых и тавровых соединений с углом наклона между стенками от 45 до 135° [от 0,785 до 2,355 рад] при толш,ине металла до 40 мм.  [c.55]

ГОСТ 5264—-80 устанавливает основные типы, конструктивные элементы и размеры сварных соединений из сталей, а также сплавов на железоникелевой и никелевой основах, выполняемых ручной дуговой сваркой металлическим электродом при толщине свариваемого металла до 175 мм. Установлены слудующие типы соединений стыковые — условное обозначение С, нахлесточные — Н, тавровые — Т и угловые — У.  [c.51]

Подкрановые балки обычно выполняют в виде сварного двутавра с ребрами жесткости. Условия их работы предъявляют вполне определенные требования к конструктивному оформлению и технологии выполнения сварных соединений. При нагружении сварного двутавра только продольным изгибающим моментом такие концентраторы, как подрез стенки или непровар корня поясного щва, особой опасности не представляют, так как располагаются параллельно нормальным и касательным напряжениям. Однако сечения подкрановой балки дополнительно испытывают периодическое нагружение сосредоточенной силой от колеса крана, передаваемоег с рельса на верхний пояс и через поясные швы на стенку балки. Кроме того, при нарушениях симметрии рельса относительно оси балки возникает дополнительный момент в поперечном направлении, воспринимаемый поясными швами и стенкой. В этом случае непровар корня поясного шва или подрез стенки оказываются расположенными поперек силового потока и поэтому могут служить причиной возникновения усталостных трещин, что подтверждается многолетней эксплуатацией таких балок. Следовательно, конструктивные элементы подобного типа целесообразно выполнять с полным проплавлением стенки и сварку поясных швов производить в положении в лодочку для предотвращения подрезов. Установка и приварка ребер жесткости производится после выполнения поясных швов наклоненным электродом. К концам подкрановой балки могут быть приварены планки, нижние грани которых опираются на колонны, задавая положение балки по высоте. Поэтому установка этих планок с монтажными отверстиями должна быть выполнена достаточно точно. Для этой цели можно использовать сборочный фиксатор 1 (рис. 16-30) в виде углового шаблона, на одной из полок которого имеются четыре отверстия. Расположение этих отверстий и размер с соответствуют проекту. Требуемая высота балки Я на опоре обеспечивается совмещением отверстий фиксатору 1 с монтажными отверстиями планки 3 на пробках 2 и прижатием горизонтальной планки фиксатора к верхнему поясу балки.  [c.400]

Основные типы, конструктивные элементы и размеры сварных соединений из стали установлены ГОСТ 5264—80. Различают следующие типы соединений стыковые (С), нахлесточные (Н), тавровые (Т) и угловые (У). Стыковые соединения без скоса свариваемых кромок применяют при толщине листов до 12 мм с зазором 1—2 мм. Стыковые соединения толщиной до 4 мм сваривают односторонним швом, от 2 до 12 мм—двусторонним швом. Стыковые соединения с У-образной разделкой кромок применяют при толщине металда 3—60 мм. Разделка при этом может быть одно- и двусторонней. Скошенные кромки притупляют для предотвращения прожога металла.  [c.476]

Упругие звенья соединяются кинематическими парами в кинематическую цепь, обладающую упругими свойствами. Поэтому вводят понятие жесткости механизма, под которым подразумевают силу или момент силы, приложенные к вхоОному звену и вызывающие его единичное линейное или угловое перемеи ение. Жесткость механизма зависит от структурной и конструктивной схемы, жесткостей его звеньев, от вида кинематических пар, соединяющих звенья, и упругих свойств их элементов. Податливость механизма, состоящего из п звеньев, последовательно соединенных р кинематическими парами, равна сумме податливостей его звеньев и кинематических пар Х с  [c.295]

При изготовлении тонкостенных оболочковых конструкций для химического аппаратостроения в целях защиты их поверхности от воздействия агрессивной среды и сохранения прочности и пластичности металла при низкой температуре используют самые разнообразные материалы (биметаллы, цветные металлы и сплавы, среднелегированные стали и др ) В связи с этим технология сварки таких конструкции достаточно сложна, нередко требует сочетания различных способов, специальных присадков, дополнительных мероприятий по предотвращению трещинообразования, защите сварочной ванны от окисления и т.д Для операций сборки и сварки цилиндрической части сосудов обычно применяют роликовые стенды, оборуд>я их paзличны и приспособлениями флюсовыми подушками, стяжными скобами, автоматическими головками для сварки, распорками, центраторами и др Сварку обечайки с днищем производят стыковыми швами за один или несколько проходов В стенки сосудов и аппаратов приходится вваривать патрубки, лючки, штуцера и другие элементы, сварные соединения которых часто являются инициаторами разрушения конструкции На рис 19 приведены в качестве примера некоторые варианты конструктивного оформления шт церов в аппаратах химического производства. Варианты с дополнительно усиливающими кольцами (см. рис 1 9,й) и утолщенными патрубками (см рис 19,6) выполняются угловыми швами, в зонах которых возникает значительная концентрация напряжений В данном месте часто появляются усталостные трещины Более предпочтительными с точки зрения повышения работоспособности являются варианты соединений с вытяжкой горловины (см рис.  [c.18]


По конструкции угловые сварные соединения трубопроводов, как и плоских элементов, делят на две категории с полным проплавлением и конструктивным непроваром. Выбор метода контроля определяется диаметром привариваемого патрубка (штуцера), возможностью контроля изнутри и наличием конструктивного зазора. Угловые сварные соединения патрубков или труб с номинальной толщиной стенки 4,5. .. 65,0 мм с сосудами (корпусами), фланцами без конструктивного зазора про-звучивают с наружной стороны патрубка наклонными совмещенными ПЭП. Контроль путем сканирования по поверхности сосуда осуществляют при диаметре последнего не менее 800 мм. Угол ввода а выбирают из того же условия, что и для плоских элементов. При сканировании по поверхности патрубка это условие определяется выражением  [c.362]

Размеры элементов силового замыкания машины назначаются с учетом ее конструктивных особенностей и необходимой жесткости. Для уменьшения необходимой величины возбуждаемых угловых перемещений целесообразно обеспечить такое соотношение последовательно соединенных жесткостей Со, С% Сз, С4, С5, при котором основная доля перемещений активного захвата приходится на деформирование образца. Это означает, что жесткости элементов силового замыкания машины Сз, и продольная жесткость преобразователя С5 должны быть значительно больше, по крайней мере на порядок, жесткости образца. Аналогичные соображения следует учитывать при выборе системы силоизмерения и разработке конструкции динамометра.  [c.154]

Замена трения скольжения внутренним трением упругого элемента. Кинематические пары с жесткими звеньями предназначены для относительно небольших линейных, угловых или их совместных перемещений, в ряде случаев могут быть заменены неподвижными соединениями с промежуточным элементом высокой упругости. Взаимное смещение звеньев в процессе их работы достигается за счет деформации эластичного слоя при этом внешнее трение заменяется внутренним трением упругого элемента. Такие соединения выполняются в виде резино-металлических шарниров в различных конструктивных вариантах. На рис. 5 показано крепление рессоры в резиновом башмаке. Резино-металлнческие шарниры обладают такими преимуществами отсутствует износ от внешнего трения отпадает необходимость в смазке и установке уплотняющих устройств упрощается уход уменьшается вес в узлах подвески амортизируются удары, что способствует бесшумности хода.  [c.154]

Трещины по околошовной зоне, имеющей пониженное сопротивление ползучести, развиваются при температурах выше 500 °С. Трещины образуются в зоне термического влияния сварки на расстоянии 2—4 мм от линии сплавления, развиваясь параллельно ей либо отклоняясь в основной металл. Такие трещины развиваются с наружной стороны сварного соединения по кольцевому периметру щва, Наличие мягкой малопрочной прослойки шириной 0,5—2 мм является характерной особенностью сварных соединений из термически упрочняемой хромомолибденованадиевой стали. Механические свойства металла таких соединений обычно удовлетворительные. Трещины по мягкой прослойке распространяются интеркристаллически и развиваются довольно медленно (за 70—100 тыс. ч). Основная причина таких повреждений — действие напряжений, превышающих допустимые и обусловленных конструктивными концентраторами напряжений (сварные соединения литых деталей с трубами, соединения элементов разной толщины, угловые щвы тройников), нарушениями трассировки и неправильной работой опорно-подвесной системы трубопроводов. Меры по предупреждению таких повреждений — снижение концентрации напряжений и улучшение условий эксплуатации трубопроводов.  [c.226]

В зависимости от назначения и конструктивных особенностей винипластового изделия применяют различные сварные швы (рис. 2.4) двухсторонний Х-образный для соединения деталей и конструкций, к которым предъявляют высокие требования по прочности, водо- и газопроницаемости односторонний V-образный — преимущественно при сварке винипласта толщиной до 5 мм, односторонний V-образный стыковой — для соединения участков трубопроводов, коробов воздуховодов валиковый, или тавровый, (одно- и двухсторонний) — для приварки ребер жесткости (снаружи аппарата) или сварки перегородок, полок и диафрагм (внутри аппарата) угловой — при сварке днищ и крышек аппаратов, приварке фланцев к трубам и т. д. нахлесточный — для сварки раструбов при монтаже трубопроводов, а также наваривания бандажей (элементов жесткости) на аппараты.  [c.153]


Смотреть страницы где упоминается термин Соединения угловые - Конструктивные элемент : [c.373]    [c.171]    [c.285]    [c.218]    [c.112]   
Справочник конструктора-машиностроителя Том3 изд.8 (2001) -- [ c.41 , c.42 , c.97 , c.98 , c.99 , c.100 , c.101 , c.102 , c.103 , c.111 , c.112 , c.113 ]



ПОИСК



Соединения клеевые Конструктивные элементы угловые

Соединения сварные из пленок армированных нахлесточные - Конструктивные элементы и размеры полиэтиленовых угловые Конструктивные элементы и размер

Угловые соединения

Элементы конструктивные



© 2025 Mash-xxl.info Реклама на сайте